【題目】觀察下列分解因式的過程:x22xy3y2

解:原式=x22xyy2y23y2

(x22xyy2)4y2

(xy)2(2y)2

(xy2y)(xy2y)

(x3y)(xy)

像這種通過增減項把多項式轉(zhuǎn)化成完全平方形式的方法稱為配方法.

1)請你運用上述配方法分解因式:x24xy5y2

2)代數(shù)式x22xy26y15是否存在最小值?如果存在,請求出當x、y分別是多少時,此代數(shù)式存在最小值,最小值是多少?如果不存在,請說明理由.

【答案】(1) ;

2)當x=1, y=3時原式有最小值;最小值是5.

【解析】

(1)理解題意,按題意所給方法分解因式即可;

2)根據(jù)題中所給方法,對原式進行變形求解即可.

(1)

;

2

, ,

∴當x=1y=3時原式有最小值,最小值是5.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】給出下列四個結論,其中正確的結論為(

A. 等邊三角形既是軸對稱圖形,又是中心對稱圖形

B. 對角線相等的四邊形是矩形

C. 三角形的外心到三個頂點的距離相等

D. 任意三個點都可確定一個圓

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4.

1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?

2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知、兩地之間有一條270千米的公路,甲、乙兩車同時出發(fā),甲車以60千米/時的速度沿此公路從地勻速開往地,乙車從地沿此公路勻速開往地,兩車分別到達目的地后停止.甲、乙兩車相距的路程(千米)與甲車的行駛時間(時)之間的函數(shù)關系如圖所示.

1)乙車的速度為   千米/時,      

2)求甲、乙兩車相遇后之間的函數(shù)關系式.

3)當甲車到達距70千米處時,求甲、乙兩車之間的路程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,邊上的中線,過點于點,過點平行線,交的延長線于點,在延長線上截得,連結、.若,則四邊形的面積等于________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形,,、分別是、的中點,連接、

求證:四邊形是矩形;

,求菱形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點,點,直線軸于點

(1)求直線的表達式和點的坐標;

(2)在直線上有一點,使得的面積為4,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A、點B、點C均落在格點上.

(I)計算△ABC的邊AC的長為_____

(II)P、Q分別為邊AB、AC上的動點,連接PQ、QB.當PQ+QB取得最小值時,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段PQ、QB,并簡要說明點P、Q的位置是如何找到的_____(不要求證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在學習等邊三角形時發(fā)現(xiàn)了直角三角形的一個性質(zhì):直角三角形中,角所對的直角邊等于斜邊的一半。小明同學對以上結論作了進一步探究.如圖1,在中,,則:.

探究結論:(1)如圖1,邊上的中線,易得結論:________三角形.

2)如圖2,在中,邊上的中線,點是邊上任意一點,連接,在邊上方作等邊,連接.試探究線段之間的數(shù)量關系,寫出你的猜想加以證明.

拓展應用:如圖3,在平面直角坐標系中,點的坐標為,點軸正半軸上的一動點,以為邊作等邊,當點在第一象內(nèi),且時,求點的坐標.

查看答案和解析>>

同步練習冊答案