如圖,在平面直角坐標系xoy中,E(8,0),F(xiàn)(0 , 6).
(1)當G(4,8)時,則∠FGE= °
(2)在圖中的網(wǎng)格區(qū)域內(nèi)找一點P,使∠FPE=90°且四邊形OEPF被過P點的一條直線分割成兩部分后,可以拼成一個正方形.
要求:寫出點P點坐標,畫出過P點的分割線并指出分割線(不必說明理由,不寫畫法).
(1)90;(2)作圖見解析,P(7,7),PH是分割線.
【解析】
試題分析:(1)根據(jù)勾股定理求出△FEG的三邊長,根據(jù)勾股定理逆定理可判定△FEG是直角三角形,且∠FGE=90 °.
(2)一方面,由于∠FPE=90°,從而根據(jù)直徑所對圓周角直角的性質(zhì),點P在以EF為直徑的圓上;另一方面,由于四邊形OEPF被過P點的一條直線分割成兩部分后,可以拼成一個正方形,從而OP是正方形的對角線,即點P在∠FOE的角平分線上,因此可得P(7,7),PH是分割線.
試題解析:(1)連接FE,
∵E(8,0),F(xiàn)(0 , 6),G(4,8),
∴根據(jù)勾股定理,得FG=,EG=,F(xiàn)E=10.
∵,即.
∴△FEG是直角三角形,且∠FGE=90 °.
(2)作圖如下:
P(7,7),PH是分割線.
考點:1.網(wǎng)格問題;2.勾股定理和逆定理;3.作圖(設計);4.圓周角定理.
科目:初中數(shù)學 來源:2013-2014學年北京市大興區(qū)中考一模數(shù)學試卷(解析版) 題型:解答題
在平面直角坐標系xOy中,直線l與直線 y= -2x關于y軸對稱,直線l與反比例函數(shù)的圖象的一個交點為A(2, m).
(1)試確定反比例函數(shù)的表達式;
(2)若過點A的直線與x軸交于點B,且∠ABO=45°,直接寫出點B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年北京市豐臺區(qū)中考二模數(shù)學卷(解析版) 題型:解答題
已知反比例函數(shù)y1=的圖象與一次函數(shù)y2=ax+b的圖象交于點A(1,4)和點B(m,-2).
(1)求這兩個函數(shù)的關系式;
(2)觀察圖象,寫出使得y1<y2成立的自變量x的取值范圍;
(3)在x軸的正半軸上存在一點P,且△ABP的面積是6,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源:2013-2014學年內(nèi)蒙古滿洲里市九年級三月月考數(shù)學試卷(解析版) 題型:選擇題
下列實數(shù)中,是無理數(shù)的為 ( )
A. 3.14 B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源:不詳 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com