如圖,在⊙O中,已知∠BOD=100°,C是圓周上的一點,則∠BCD為( )

A.130°
B.100°
C.80°
D.50°
【答案】分析:由在⊙O中,∠BOD=100°,根據(jù)在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半,即可求得∠BAD的度數(shù),又由圓的內(nèi)接四邊形的性質(zhì),求得∠BCD的度數(shù).
解答:解:∵∠BOD=100°,
∴∠BAD=∠BOD=50°,
∵∠BAD+∠BCD=180°,
∴∠BCD=180°-∠BAD=130°.
故選A.
點評:此題考查了圓周角定理與圓的內(nèi)接四邊形的性質(zhì).此題難度不大,注意在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半與圓的內(nèi)接四邊形對角互補定理的應用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

22、如圖,在△ABC中,已知B(-3,1).
(1)將△ABC向右平移4個單位,再向下平移兩個單位,得到△A1B1C1,畫出△A1B1C1,寫出B1的坐標;
(2)畫出△A1B1C1關(guān)于x軸對稱的△A2B2C2;
(3)將△ABC繞點B逆時針方向旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A3B3C3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖,在△ABC中,已知∠ABC和∠ACB的平分線相交于點D,過D點作EF∥BC,交AB于點E,交AC于點F,若BE+CF=9,則線段EF的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,在△ABC中,已知∠C=90°,BC=3,AC=4,則它的內(nèi)切圓半徑是
1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,已知AB=AC=10,BC=16,O是△ABC的重心,則tan∠DBC的值是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在△ABC中,已知AB=AC,D為AB上一點,且AD=CD=BC,則∠B=
72°
72°
,∠ACD=
36°
36°

查看答案和解析>>

同步練習冊答案