【題目】如圖所示,O是矩形ABCD的對(duì)角線的交點(diǎn),作DE∥AC,CE∥BD,DE、CE相交于點(diǎn)E.求證:
(1)四邊形OCED是菱形.
(2)連接OE,若AD=4,CD=3,求菱形OCED的周長(zhǎng)和面積.

【答案】
(1)證明:∵DE∥OC,CE∥OD,

∵四邊形OCED是平行四邊形.

∴OC=DE,OD=CE

∵四邊形ABCD是矩形,

∴AO=OC=BO=OD.

∴CE=OC=BO=DE.

∴四邊形OCED是菱形


(2)解:如圖,連接OE.

在Rt△ADC中,AD=4,CD=3

由勾股定理得,AC=5∴OC=2.5

∴C菱形OCED=4OC=4×2.5=10,

在菱形OCED中,OE⊥CD,又∵OE⊥CD,

∴OE∥AD.

∵DE∥AC,OE∥AD,

∴四邊形AOED是平行四邊形,

∴OE=AD=4.

∴S菱形OCED=


【解析】(1)首先由CE∥BD,DE∥AC,可證得四邊形CODE是平行四邊形,又由四邊形ABCD是矩形,根據(jù)矩形的性質(zhì),易得OC=OD,即可判定四邊形CODE是菱形,(2)根據(jù)SODC= S矩形ABCD以及四邊形OCED的面積=2SODC即可解決問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】43°29+36°31=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P(1,-2)關(guān)于y軸對(duì)稱(chēng)的點(diǎn)P'的坐標(biāo)為__.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),OF⊥BC于點(diǎn)F,交⊙O于點(diǎn)E,AE與BC交于點(diǎn)H,點(diǎn)D為OE的延長(zhǎng)線上一點(diǎn),且∠ODB=∠AEC.

求證:(1)BD是⊙O的切線;(2)CE2=EH·EA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化.開(kāi)始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開(kāi)始分散.經(jīng)過(guò)實(shí)驗(yàn)分析可知, 學(xué)生的注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如圖所示(其中AB,BC分別為線段,CD為雙曲線的一部分)

(1)開(kāi)始上課后第5分鐘時(shí)與第30分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?

(2)一道數(shù)學(xué)競(jìng)賽題,需要講19分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到36,那么經(jīng)過(guò)適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,E為CD的中點(diǎn),H為BE上的一點(diǎn), =3,連接CH并延長(zhǎng)交AB于點(diǎn)G,連接GE并延長(zhǎng)交AD的延長(zhǎng)線于點(diǎn)F.

(1)求證: ;

(2)若∠CGF=90°,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠B﹦90°,AB﹦8cm,AD﹦24cm,BC﹦26cm,點(diǎn)p從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)D運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C同時(shí)出發(fā),以3cm/s的速度向點(diǎn)B運(yùn)動(dòng),規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t s.
(1)t為何值時(shí),四邊形PQCD為平行四邊形?
(2)t為何值時(shí),四邊形PQCD為等腰梯形?(等腰梯形的兩腰相等,兩底角相等)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】4_____的算術(shù)平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線a∥b,且a與b之間的距離為4,點(diǎn)A到直線a的距離為2,點(diǎn)B到直線b的距離為3,AB=2 .試在直線a上找一點(diǎn)M,在直線b上找一點(diǎn)N,滿足MN⊥a且AM+MN+NB的長(zhǎng)度和最短,則此時(shí)AM+NB=

查看答案和解析>>

同步練習(xí)冊(cè)答案