若∠OAB=30°,OA=10cm,則以O(shè)為圓心,6cm為半徑的圓與直線AB的位置關(guān)系是(  )
A.相交B.相切C.相離D.不能確定
如圖,作OD⊥AB,垂足為D,
∵∠OAB=30°,OA=10cm,
∴OD=5cm,
d=5cm<r=6cm,
∴直線AB與圓O相交.
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),AD垂直于過點(diǎn)C的直線,垂足為D,且AC平分∠BAD.
(1)求證:CD是⊙O的切線;
(2)若AC=2
5
,CD=2,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下面的材料:
如圖(1),在以AB為直徑的半圓O內(nèi)有一點(diǎn)P,AP、BP的延長線分別交半圓O于點(diǎn)C、D.
求證:AP•AC+BP•BD=AB2
證明:連接AD、BC,過P作PM⊥AB,則∠ADB=∠AMP=90°,
∴點(diǎn)D、M在以AP為直徑的圓上;同理:M、C在以BP為直徑的圓上.
由割線定理得:AP•AC=AM•AB,BP•BD=BM•BA,
所以,AP•AC+BP•BD=AM•AB+BM•AB=AB•(AM+BM)=AB2
當(dāng)點(diǎn)P在半圓周上時(shí),也有AP•AC+BP•BD=AP2+BP2=AB2成立,那么:
(1)如圖(2)當(dāng)點(diǎn)P在半圓周外時(shí),結(jié)論AP•AC+BP•BD=AB2是否成立?為什么?
(2)如圖(3)當(dāng)點(diǎn)P在切線BE外側(cè)時(shí),你能得到什么結(jié)論?將你得到的結(jié)論寫出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在兩個(gè)同心圓中,大圓的弦AB切小圓于C點(diǎn),AB=12cm.求兩個(gè)圓之間的圓環(huán)面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知⊙O的直徑等于12cm,圓心O到直線l的距離為5cm,則直線l與⊙O的交點(diǎn)個(gè)數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)D在⊙O的直徑AB的延長線上,點(diǎn)C在⊙O上,AC=CD,∠D=30°,
求證:CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,圓心O在邊長為
2
的正方形ABCD的對角線BD上,⊙O過B點(diǎn)且與AD、DC邊均相切,則⊙O的半徑是( 。
A.2(
2
-1)
B.2(
2
+1)
C.2
2
-1
D.2
2
+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

含30°角的直角三角板ABC中,∠A=30°.將其繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)α角(0°<α<120°且α≠90°),得到Rt△A'B'C,A'C邊與AB所在直線交于點(diǎn)D,過點(diǎn)D作DEA'B'交CB'邊于點(diǎn)E,連接BE.
(1)如圖1,當(dāng)A'B'邊經(jīng)過點(diǎn)B時(shí),α=______°;
(2)在三角板旋轉(zhuǎn)的過程中,若∠CBD的度數(shù)是∠CBE度數(shù)的m倍,猜想m的值并證明你的結(jié)論;
(3)設(shè)BC=1,AD=x,△BDE的面積為S,以點(diǎn)E為圓心,EB為半徑作⊙E,當(dāng)S=
1
3
S△ABC
時(shí),求AD的長,并判斷此時(shí)直線A'C與⊙E的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖⊙O的兩條弦AB、CD相交于點(diǎn)E,AC與DB的延長線交于點(diǎn)P,下列結(jié)論中成立的是(  )
A.CE•CD=BE•BAB.CE•AE=BE•DE
C.PC•CA=PB•BDD.PC•PA=PB•PD

查看答案和解析>>

同步練習(xí)冊答案