【題目】為慶祝改革開(kāi)放40周年,深圳舉辦了燈光秀,某數(shù)學(xué)興趣小組為測(cè)量“平安金融中心”AB的高度,他們?cè)诘孛?/span>C處測(cè)得另一幢大廈DE的頂部E處的仰角∠ECD=32°.登上大廈DE的頂部E處后,測(cè)得“平安中心”AB的頂部A處的仰角為60°,(如圖).已知C、D、B三點(diǎn)在同一水平直線上,且CD=400米,DB=200米.
(1)求大廈DE的高度;
(2)求平安金融中心AB的高度.
(參考數(shù)據(jù):sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,≈1.41,≈1.73)
【答案】(1)248米(2)594米
【解析】
(1)在Rt△DCE中,根據(jù)正切函數(shù)的定義即可求出大廈DE的高度;
(2)作EF⊥AB于F.由題意,得EF=DB=200米,BF=DE,∠AEF=60°.在Rt△AFE中,根據(jù)正切函數(shù)的定義得出AF=EFtan∠AEF,由AB=BF+AF即可得到結(jié)論.
(1)∵在Rt△DCE中,∠CDE=90°,∠ECD=32°,CD=400,∴DE=CDtan∠ECD≈400×0.62=248(米).
答:大廈DE的高度約為248米.
(2)如圖,作EF⊥AB于F.
由題意,得:EF=DB=200,BF=DE=248,∠AEF=60°.
在Rt△AFE中,∵∠AFE=90°,∴AF=EFtan∠AEF≈200×1.73=346,∴AB=BF+AF=248+346=594(米).
答:平安金融中心AB的高度約為594米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在以線段AB為直徑的⊙O上取一點(diǎn),連接AC、BC.將△ABC沿AB翻折后得到△ABD.
(1)試說(shuō)明點(diǎn)D在⊙O上;
(2)在線段AD的延長(zhǎng)線上取一點(diǎn)E,使AB2=AC·AE.求證:BE為⊙O的切線;
(3)在(2)的條件下,分別延長(zhǎng)線段AE、CB相交于點(diǎn)F,若BC=2,AC=4,求線段EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,E,F分別為BC,CD上的點(diǎn),且AE⊥BF,垂足為G.
(1)求證:AE=BF;(2)若BE=,AG=2,求正方形的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 AB 為⊙O 的直徑,BC⊥AB 于 B,且 BC=AB,D 為半圓⊙O 上的一點(diǎn),連接 BD 并延長(zhǎng)交半圓⊙O 的切線 AE 于 E.
(1)如圖 1,若 CD=CB,求證:CD 是⊙O 的切線;
(2)如圖 2,若 F 點(diǎn)在 OB 上,且CD⊥DF,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】興發(fā)服裝店老板用4500元購(gòu)進(jìn)一批某款T恤衫,由于深受顧客喜愛(ài),很快售完,老板又用4950元購(gòu)進(jìn)第二批該款式T恤衫,所購(gòu)數(shù)量與第一批相同,但每件進(jìn)價(jià)比第一批多了9元.
(1)第一批該款式T恤衫每件進(jìn)價(jià)是多少元?
(2)老板以每件120元的價(jià)格銷(xiāo)售該款式T恤衫,當(dāng)?shù)诙?/span>T恤衫售出時(shí),出現(xiàn)了滯銷(xiāo),于是決定降價(jià)促銷(xiāo),若要使第二批的銷(xiāo)售利潤(rùn)不低于650元,剩余的T恤衫每件售價(jià)至少要多少元?(利潤(rùn)=售價(jià)﹣進(jìn)價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠B=∠C=30°,點(diǎn)O是BC邊上一點(diǎn),以點(diǎn)O為圓心、OB為半徑的圓經(jīng)過(guò)點(diǎn)A,與BC交于點(diǎn)D.
⑴ 試說(shuō)明AC與⊙O相切;
⑵ 若,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D, 點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓恰好經(jīng)過(guò)點(diǎn)D,分別交AC、AB于點(diǎn)E、F.
(1)試判斷直線BC與OD的位置關(guān)系,并說(shuō)明理由.
(2)若BD=,BF=3,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問(wèn)題:
(1)寫(xiě)出方程ax2+bx+c=0的兩個(gè)根;
(2)寫(xiě)出y隨x的增大而減小的自變量x的取值范圍;
(3)若方程ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com