【題目】如圖,△ABC是等邊三角形,AB=4cm,CD⊥AB于點(diǎn)D,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC以2cm/s的速度向終點(diǎn)C運(yùn)動(dòng),當(dāng)點(diǎn)P出發(fā)后,過(guò)點(diǎn)P作PQ∥BC交折線AD﹣DC于點(diǎn)Q,以PQ為邊作等邊三角形PQR,設(shè)四邊形APRQ與△ACD重疊部分圖形的面積為S(cm2),點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).
(1)當(dāng)點(diǎn)Q在線段AD上時(shí),用含t的代數(shù)式表示QR的長(zhǎng);
(2)求點(diǎn)R運(yùn)動(dòng)的路程長(zhǎng);
(3)當(dāng)點(diǎn)Q在線段AD上時(shí),求S與t之間的函數(shù)關(guān)系式;
(4)直接寫出以點(diǎn)B、Q、R為頂點(diǎn)的三角形是直角三角形時(shí)t的值.
【答案】(1)證明見解析(2)2+2(3)①S=S菱形APRQ2t2;②S=﹣t2+6t﹣2(4)t=或t=
【解析】
試題分析:(1)易證△APQ是等邊三角形,即可得到QR=PQ=AP=2t;
(2)過(guò)點(diǎn)A作AG⊥BC于點(diǎn)G,如圖②,易得點(diǎn)R運(yùn)動(dòng)的路程長(zhǎng)是AG+CG,只需求出AG、CG就可解決問(wèn)題;
(3)四邊形APRQ與△ACD重疊部分圖形可能是菱形,也可能是五邊形,故需分情況討論,然后運(yùn)用割補(bǔ)法就可解決問(wèn)題;
(4)由于直角頂點(diǎn)不確定,故需分情況討論,只需分∠QRB=90°和∠RQB=90°兩種情況討論,即可解決問(wèn)題.
試題解析:(1)如圖①,
∵△ABC是等邊三角形,
∴∠ACB=∠B=60°.
∵PQ∥BC,
∴∠APQ=∠ACB=60°,∠AQP=∠B=60°,
∴△APQ是等邊三角形.
∴PQ=AP=2t.
∵△PQR是等邊三角形,
∴QR=PQ=2t;
(2)過(guò)點(diǎn)A作AG⊥BC于點(diǎn)G,如圖②,
則點(diǎn)R運(yùn)動(dòng)的路程長(zhǎng)是AG+CG.
在Rt△AGC中,∠AGC=90°,sin60°=,cos60°=,AC=4,
∴AG=2,CG=2.
∴點(diǎn)R運(yùn)動(dòng)的路程長(zhǎng)2+2;
(3)①當(dāng)0<t≤時(shí),如圖③,
S=S菱形APRQ=2×S正△APQ=2××(2t)2=2t2;
②當(dāng)<t≤1時(shí),如圖④
PE=PCsin∠PCE=(4﹣2t)×=2﹣t,
∴ER=PR﹣PE=2t﹣(2﹣t)=3t﹣2,
∴EF=ERtanR=(3t﹣2)
∴S=S菱形APRQ﹣S△REF
=2t2﹣(3t﹣2)2=﹣t2+6t﹣2;
(4)t=或t=
提示:①當(dāng)∠QRB=90°時(shí),如圖⑤,
cos∠RQB=,
∴QB=2QR=2QA,
∴AB=3QA=6t=4,
∴t=;
②當(dāng)∠RQB=90°時(shí),如圖⑥,
同理可得BC=3RC=3PC=3(4﹣2t)=4,
∴t=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校欲招聘一名數(shù)學(xué)教師,學(xué)校對(duì)甲、乙、丙三位候選人進(jìn)行了三項(xiàng)能力測(cè)試,各項(xiàng)測(cè)試成績(jī)滿分均為100分,根據(jù)結(jié)果擇優(yōu)錄用.三位候選人的各項(xiàng)測(cè)試成績(jī)?nèi)缦卤硭荆?/span>
測(cè)試項(xiàng)目 | |||
測(cè)試成績(jī)/分 | |||
甲 | 乙 | 丙 | |
教學(xué)能力 | 85 | 73 | 73 |
科研能力 | 70 | 71 | 65 |
組織能力 | 64 | 72 | 84 |
(1)如果根據(jù)三項(xiàng)測(cè)試的平均成績(jī),誰(shuí)將被錄用,說(shuō)明理由;
(2)根據(jù)實(shí)際需要,學(xué)校將教學(xué)、科研和組織三項(xiàng)能力測(cè)試得分按5∶3∶2的比例確定每人的成績(jī),誰(shuí)將被錄用,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用科學(xué)記數(shù)法表示下列各數(shù):
1萬(wàn)=
1億=
80000000=
-76500000=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了豐富學(xué)生的第二課堂,對(duì)學(xué)生參與演講、舞蹈、書法和攝影活動(dòng)的興趣情況進(jìn)行調(diào)查,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問(wèn)卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中最感興趣的一項(xiàng)),對(duì)調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)后,繪制了如下兩個(gè)統(tǒng)計(jì)圖:
(1)此次調(diào)查抽取的學(xué)生人數(shù)m= 名,其中選擇“書法”的學(xué)生占抽樣人數(shù)的百分比n= ;
(2)若該校有3000名學(xué)生,請(qǐng)根據(jù)以上數(shù)據(jù)估計(jì)該校對(duì)“書法”最感興趣的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在Rt△ABC中,∠C=90°∠A、∠B、∠C所對(duì)的邊分別記作a、b、c.
(1)如圖1,分別以△ABC的三條邊為邊長(zhǎng)向外作正方形,其正方形的面積由小到大分別記作S1、S2、S3,則有____________;
(2)如圖2,分別以△ABC的三條邊為直徑向外作半圓,其半圓的面積由小到大分別記作S1、S2、S3,請(qǐng)問(wèn)S1+S2與S3有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)分別以直角三角形的三條邊為直徑作半圓,如圖3所示,其面積由小到大分別記作S1、S2、S3,根據(jù)(2)中的探索,直接回答S1+S2與S3有怎樣的數(shù)量關(guān)系;
(4)若Rt△ABC中,AC=6,BC=8,求出圖4中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明解方程的過(guò)程如下.請(qǐng)指出他解答過(guò)程中的錯(cuò)誤,并寫出正確的解答過(guò)程.
解:方程兩邊同乘x,得1-(x-2)=1.……①
去括號(hào),得1-x-2=1.……②
合并同類項(xiàng),得-x-1=1.……③
移項(xiàng),得-x=2.……④
解得x=-2.……⑤
∴原方程的解為x=-2.……⑥
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,⊙C過(guò)原點(diǎn)O,交x軸于點(diǎn)A(2,0),交y軸于點(diǎn)B(0,).
(1)求圓心C的坐標(biāo).
(2)拋物線y=ax2+bx+c過(guò)O,A兩點(diǎn),且頂點(diǎn)在正比例函數(shù)y=-的圖象上,求拋物線的解析式.
(3)過(guò)圓心C作平行于x軸的直線DE,交⊙C于D,E兩點(diǎn),試判斷D,E兩點(diǎn)是否在(2)中的拋物線上.
(4)若(2)中的拋物線上存在點(diǎn)P(x0,y0),滿足∠APB為鈍角,求x0的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com