如圖,直線OC、BC的函數(shù)關(guān)系式分別為y=x和y=-2x+6,動(dòng)點(diǎn)P(x,0)在OB上移動(dòng)(0<x<3),過(guò)點(diǎn)P作直線l與x軸垂直.
(1)求點(diǎn)C的坐標(biāo);
(2)設(shè)△OBC中位于直線l左側(cè)部分的面積為s,寫(xiě)出s與x之間的函數(shù)關(guān)系式;
(3)在直角坐標(biāo)系中畫(huà)出(2)中函數(shù)的圖象;
(4)當(dāng)x為何值時(shí),直線l平分△OBC的面積?
(1)解方程組
y=x
y=-2x+6

消去y得:-2x+6=x,解得x=2,
把x=2代入y=x得:y=2,
所以
x=2
y=2

則C點(diǎn)的坐標(biāo)是(2,2).

(2)過(guò)點(diǎn)C作CD⊥x軸于D,
當(dāng)0<x≤2時(shí),設(shè)直線l與OC交于點(diǎn)M,
PM
CD
=
OP
OD
,即
PM
2
=
x
2

則PM=x,
則S=
1
2
OP•PM=
1
2
x2
當(dāng)2<x<3時(shí),△ODC的面積是
1
2
×2×2=2,
∵OP=x,OD=2,則PD=x-2,CD=2,PN=-2x+6,
則梯形PNCD的面積為
1
2
×(-2x+6+2)×(x-2)=(-x+4)(x-2),
因而函數(shù)解析式是s=2+(-x+4)(x-2)=-x2+6x-6;

(4)當(dāng)0<x≤2時(shí),解方程
1
2
x2=
3
2
,解得x=
3
,
當(dāng)2<x<3時(shí),(3-x)2=
3
2
,
解得x=
6-
6
2
(舍去),x=
6+
6
2
(舍去).
總之,當(dāng)x=
3
時(shí),直線l平分△OBC的面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

直線y=1.5x-3分別交x,y軸于A、B兩點(diǎn),O是原點(diǎn).
(1)求出A、B兩點(diǎn)的坐標(biāo);
(2)求△AOB的面積;
(3)過(guò)△AOB的頂點(diǎn)能不能畫(huà)出直線把△AOB分成面積相等的兩部分?若能,可以畫(huà)出幾條?請(qǐng)任選一條求出該直線所對(duì)應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若一次函數(shù)y=-
3
4
x+b(b>0)與x,y軸分別交于A,B兩點(diǎn),
(1)直接寫(xiě)出A、B兩點(diǎn)的坐標(biāo)(用含b的代數(shù)式表示)
(2)當(dāng)b=2時(shí),求△OAB的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

通過(guò)研究發(fā)現(xiàn):學(xué)生的注意力隨老師講課時(shí)間變化而變化.講課開(kāi)始時(shí),學(xué)生的興趣激增,中間一段時(shí)間,學(xué)生注意力保持較理想狀態(tài),隨后學(xué)生的注意力開(kāi)始分散.學(xué)生的注意力y隨時(shí)間x(分鐘)變化的圖象如圖所示,當(dāng)0≤x≤10時(shí)圖象是拋物線的一部分,當(dāng)10≤x≤20,20≤x≤40時(shí),圖象都是線段.
(1)開(kāi)始多少分鐘時(shí),學(xué)生的注意力最強(qiáng)?能保持多少時(shí)間?
(2)x在什么范圍內(nèi),學(xué)生的注意力隨老師講課時(shí)間增加而逐漸增強(qiáng)?x在什么范圍內(nèi),學(xué)生的注意力隨老師講課時(shí)間增加而逐漸降低?
(3)當(dāng)20≤x≤40時(shí),求注意力y隨與時(shí)間x(分鐘)的函數(shù)關(guān)系式?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

直線y=kx+b(k≠0)與坐標(biāo)軸分別交于A、B兩點(diǎn),OA、OB的長(zhǎng)分別是方程x2-14x+48=0的兩根(OA>OB),動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿路線O?B?A以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),到達(dá)A點(diǎn)時(shí)運(yùn)動(dòng)停止.
(1)直接寫(xiě)出A、B兩點(diǎn)的坐標(biāo);
(2)設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),△OPA的面積為S,求S與t之間的函數(shù)關(guān)系式(不必寫(xiě)出自變量的取值范圍);
(3)當(dāng)S=12時(shí),直接寫(xiě)出點(diǎn)P的坐標(biāo),此時(shí),在坐標(biāo)軸上是否存在點(diǎn)M,使以O(shè)、A、P、M為頂點(diǎn)的四邊形是梯形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拖拉機(jī)剛開(kāi)始工作時(shí),油箱中有40升油,且工作每小時(shí)耗油5升.
(1)請(qǐng)寫(xiě)出拖拉機(jī)郵箱中的余油量Q(升)與工作時(shí)間t(小時(shí))的函數(shù)關(guān)系式;
(2)求出自變量t的取值范圍;
(3)畫(huà)出這個(gè)函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)系中,直線y=x+1與y=-
3
4
x+3
分別交x軸于點(diǎn)B和點(diǎn)C,點(diǎn)D是直線y=-
3
4
x+3
與y軸的交點(diǎn).
(1)求點(diǎn)B、C、D的坐標(biāo);
(2)設(shè)M(x,y)是直線y=x+1上一點(diǎn),△BCM的面積為S,請(qǐng)寫(xiě)出S與x的函數(shù)關(guān)系式;來(lái)探究當(dāng)點(diǎn)M運(yùn)動(dòng)到什么位置時(shí),△BCM的面積為10,并說(shuō)明理由.
(3)線段CD上是否存在點(diǎn)P,使△CBP為等腰三角形,如果存在,直接寫(xiě)出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,正方形ABCD的邊長(zhǎng)為2cm,在對(duì)稱中心O處有一釘子.動(dòng)點(diǎn)P,Q同時(shí)從點(diǎn)A出發(fā),點(diǎn)P沿A?B?C方向以每秒2cm的速度運(yùn)動(dòng),到點(diǎn)C停止,點(diǎn)Q沿A?D方向以每秒1cm的速度運(yùn)動(dòng),到點(diǎn)D停止.P,Q兩點(diǎn)用一條可伸縮的細(xì)橡皮筋連接,設(shè)x秒后橡皮筋掃過(guò)的面積為ycm2
(1)當(dāng)0≤x≤1時(shí),求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)橡皮筋剛好觸及釘子時(shí),求x值;
(3)當(dāng)1≤x≤2時(shí),求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出橡皮筋從觸及釘子到運(yùn)動(dòng)停止時(shí)∠POQ的變化范圍;
(4)當(dāng)0≤x≤2時(shí),請(qǐng)?jiān)诮o出的直角坐標(biāo)系中畫(huà)出y與x之間的函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知一個(gè)長(zhǎng)方形周長(zhǎng)為60米.求它三長(zhǎng)y(米)與寬x(米)之間三函數(shù)關(guān)系式,并指出關(guān)系式二三自變量與函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案