【題目】已知直線l1y=x+6y軸交于點B,直線l2y=kx+6x軸交于點A,且直線l1與直線l2相交所形成的角中,其中一個角的度數(shù)是75°,則線段AB的長為______

【答案】124

【解析】

令直線y=x+6x軸交于點C,令y=x+6x=0,則y=6,得到B0,6);令y=kx+6y=0,則x=-6,求得C-6,0),求得∠BCO=45°,如圖1所示,當α=BCO+BAO=75°,如圖2所示,當α=CBO+ABO=75°,解直角三角形即可得到結論.

令直線y=x+6x軸交于點C

y=x+6x=0,則y=6

B0,6);

y=kx+6y=0,則x=-6

C-6,0),

∴∠BCO=45°,

如圖1所示,∵α=BCO+BAO=75°,

∴∠BAO=30°

AB=2OB=12,

如圖2所示,∵α=CBO+ABO=75°,

∴∠ABO=30°,

AB=OB=4

故答案為:124

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O是正△ABC內(nèi)一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉中心逆時針旋轉60°得到線段BO′,下列結論:①△BO′A可以由△BOC繞點B逆時針旋轉60°得到;OO′的距離為4;③∠AOB=150°④S四邊形AOBO;⑤SAOC+SAOB=.其中正確的結論是(  )

A.①②③⑤B.①②③④C.①②③④⑤D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了綠化環(huán)境,某中學八年級(3班)同學都積極參加了植樹活動,下面是今年3月份該班同學植樹情況的形統(tǒng)計圖和不完整的條形統(tǒng)計圖:

請根據(jù)以上統(tǒng)計圖中的信息解答下列問題.

1)植樹3株的人數(shù)為   ;

2)該班同學植樹株數(shù)的中位數(shù)是   ;

3)求該班同學平均植樹的株數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2013年四川瀘州8分)如圖,為了測出某塔CD的高度,在塔前的平地上選擇一點A,用測角儀測得塔頂D的仰角為30°,在A、C之間選擇一點B(A、B、C三點在同一直線上).用測角儀測得塔頂D的仰角為75°,且AB間的距離為40m

(1)求點B到AD的距離;

(2)求塔高CD(結果用根號表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,ADCD于點D.EAB延長線上一點,CE交⊙O于點F,連結OCAC.

(1)求證AC平分∠DAO

(2)若∠DAO=105°,E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,AC=15BC=9,點P是線段AC上的一個動點,連接BP,將線段BP繞點P逆時針旋轉90°得到線段PD,連接AD,則線段AD的最小值是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCDBE都是等腰直角三角形,∠ABC=DBE=90°,點D在線段AC上.

1)求∠DCE的度數(shù);

2)當點D在線段AC上運動時(D不與A重合),請寫出一個反映DADC,DB之間關系的等式,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某經(jīng)銷商從市場得知如下信息:

某品牌空調扇

某品牌電風扇

進價(元/臺)

700

100

售價(元/臺)

900

160

他現(xiàn)有40000元資金可用來一次性購進該品牌空調扇和電風扇共100臺,設該經(jīng)銷商購進空調扇臺,空調扇和電風扇全部銷售完后獲得利潤為.

1)求關于的函數(shù)解析式;

2)利用函數(shù)性質,說明該經(jīng)銷商如何進貨可獲利最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:把RtABCRtDEF按如圖1擺放(點C與點E重合),點BCE)、F在同一條直線上,∠ACB=∠EDF90°,∠DEF45°AC8cm,BC6cmEF9cm,如圖2,△DEF從圖1的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿BA向點A勻速移動.當△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DEAC相交于點Q,連接PQ,設移動時間為ts)(0t4.5).解答下列問題:

1)用含t的代數(shù)式表示線段AP   

2)當t為何值時,點E在∠A的平分線上?

3)當t為何值時,點A在線段PQ的垂直平分線上?

4)連接PE,當t1s)時,求四邊形APEC的面積.

查看答案和解析>>

同步練習冊答案