【題目】如圖,AD∥BC,∠A=90°,EAB上的一點(diǎn),且AD=BE,∠1=∠2.

(1)求證:△ADE≌△BEC;

(2)若AD=6,AB=14,請(qǐng)求出CD的長(zhǎng).

【答案】(1)見(jiàn)解析;(2)

【解析】

(1)根據(jù)已知可得到∠A=∠B=90°,DE=CE,AD=BE從而利用HL判定兩三角形全等;

(2)由三角形全等可得到對(duì)應(yīng)角相等,對(duì)應(yīng)邊相等,由已知可推出∠DEC=90°,由已知我們可求得BE、AE的長(zhǎng),再利用勾股定理求得ED、DC的長(zhǎng).

(1)∵AD∥BC,∠A=90°,∠1=∠2,

∴∠A=∠B=90°,DE=CE.

∵AD=BE,

∴△ADE≌△BEC.

(2)由△ADE≌△BEC∠AED=∠BCE,AD=BE.

∴∠AED+∠BEC=∠BCE+∠BEC=90°.

∴∠DEC=90°.

∵AD=6,AB=14,

∴BE=AD=6,AE=14-6=8.

∵∠1=∠2,

∴ED=EC=

∴DC=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一幅三角板拼成如圖所示的圖形,過(guò)點(diǎn)CCF平分∠DCEDE于點(diǎn)F

1)求證:CF∥AB

2)求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市居民用水實(shí)行階梯水價(jià),實(shí)施細(xì)則如下表:

分檔水量

年用水量 (立方米)

水價(jià) (/立方米)

第一階梯

0~180()

5.00

第二階梯

181~260()

7.00

第三階梯

260以上

9.00

例如,某戶(hù)家庭年使用自來(lái)水200 m3,應(yīng)繳納:180×5+(200-180)×7=1040元;

某戶(hù)家庭年使用自來(lái)水300 m3,應(yīng)繳納:180×5+(260-180)×7+(300-260)×9=1820元.

(1)小剛家2017年共使用自來(lái)水170 m3,應(yīng)繳納 元;小剛家2018年共使用自來(lái)水260 m3,應(yīng)繳納 元.

(2)小強(qiáng)家2018年使用自來(lái)水共繳納1180元,他家2018年共使用了多少自來(lái)水?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)M、N分別是正五邊形ABCDE的邊BC、CD上的點(diǎn),且BM=CN,AM交BN于點(diǎn)P.
(1)求證:△ABM≌△BCN;
(2)求∠APN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為正整數(shù)的△ABC中,AB=AC,且AB邊上的中線CD將△ABC的周長(zhǎng)分為1:2的兩部分,則△ABC面積的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)M為直線AB上一動(dòng)點(diǎn), 都是等邊三角形,連接BN

求證:

分別寫(xiě)出點(diǎn)M在如圖2和圖3所示位置時(shí),線段AB、BM、BN三者之間的數(shù)量關(guān)系不需證明;

如圖4,當(dāng)時(shí),證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)M(﹣2, ),頂點(diǎn)坐標(biāo)為N(﹣1, ),且與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).

(1)求拋物線的解析式;
(2)點(diǎn)P為拋物線對(duì)稱(chēng)軸上的動(dòng)點(diǎn),當(dāng)△PBC為等腰三角形時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線AC上是否存在一點(diǎn)Q,使△QBM的周長(zhǎng)最?若存在,求出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60,得到△BAE,連接ED,BC=5,BD=4,則有以下四個(gè)結(jié)論:①△BDE是等邊三角形;②AE∥BC;③△ADE的周長(zhǎng)是9;④∠ADE=∠BDC。其中正確結(jié)論的序號(hào)是(

A. ②③④ B. ①③④ C. ①②④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面四個(gè)整式中,不能表示圖中陰影部分面積的是 ( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案