【題目】某體育老師測量了自己任教的甲、乙兩班男生的身高,并制作了如下不完整的統(tǒng)計圖表
身高分組 | 頻數(shù) | 頻率 |
152≤ x<155 | 3 | 0.06 |
155≤ x<158 | 7 | 0.14 |
158≤ x<161 | m | 0.28 |
161≤ x<164 | 13 | n |
164≤ x<167 | 9 | 0.18 |
167≤ x<170 | 3 | 0.06 |
170≤ x<173 | 1 | 0.02 |
根據(jù)以上統(tǒng)計圖表完成下列問題:
(1)統(tǒng)計表中m=____,n=____;并將頻數(shù)分布直方圖補(bǔ)充完整;
(2)在這次測量中兩班男生身高的中位數(shù)在什么范圍內(nèi)?
【答案】(1)14;0.26;補(bǔ)圖見解析;(2)161≤x<164.
【解析】
(1)設(shè)總?cè)藬?shù)為x人,則有=0.06,解得x=50,再根據(jù)頻率公式求出m,n.畫出直方圖即可;
(2)根據(jù)中位數(shù)的定義即可判斷
解:(1)設(shè)總?cè)藬?shù)為x人,則有=0.06,解得x=50,
∴m=500.28=14,n==0.26;
補(bǔ)全頻數(shù)分布直方圖如圖所示:
(2)由于共有50人,所以中位數(shù)是第25人與第26人身高的平均數(shù),故在這次測量中兩班男生身高的中位數(shù)在161≤x<164范圍內(nèi).
故答案為:(1)14;0.26;補(bǔ)圖見解析;(2)161≤x<164.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將置于平面直角坐標(biāo)系中的三角板AOB繞O點(diǎn)順時針旋轉(zhuǎn)90°得△A'OB'.已知∠AOB=30°,∠B=90°,AB=1,則B'點(diǎn)的坐標(biāo)為 ( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,根據(jù)圖中信息解答下列問題:
(1)關(guān)于x的不等式ax+b>0的解集是 .
(2)關(guān)于x的不等式mx+n<1的解集是 .
(3)當(dāng)x為何值時,y1≤y2?
(4)當(dāng)x為何值時,0<y2<y1?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一個△ABC,頂點(diǎn)A(﹣1,3),B(2,0),C(﹣3,﹣1).
(1)畫出△ABC關(guān)于y軸的對稱圖形△A1B1C1(不寫畫法);
點(diǎn)A關(guān)于x軸對稱的點(diǎn)坐標(biāo)為
點(diǎn)B關(guān)于y軸對稱的點(diǎn)坐標(biāo)為
點(diǎn)C關(guān)于原點(diǎn)對稱的點(diǎn)坐標(biāo)為
(2)若網(wǎng)格上的每個小正方形的邊長為1,則△ABC的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某森林公園從正門到側(cè)門有一條公路供游客運(yùn)動,甲徒步從正門出發(fā)勻速走向側(cè)門,出發(fā)一段時間開始休息,休息了0.6小時后仍按原速繼續(xù)行走.乙與甲同時出發(fā),騎自行車從側(cè)門勻速前往正門,到達(dá)正門后休息0.2小時,然后按原路原速勻速返回側(cè)門.圖中折線分別表示甲、乙到側(cè)門的路程y(km)與甲出發(fā)時間x(h)之間的函數(shù)關(guān)系圖象.根據(jù)圖象信息解答下列問題.
(1)求甲在休息前到側(cè)門的路程y(km)與出發(fā)時間x(h)之間的函數(shù)關(guān)系式.
(2)求甲、乙第一次相遇的時間.
(3)直接寫出乙回到側(cè)門時,甲到側(cè)門的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直徑為10的半圓O,tan∠DBC= ,∠BCD的平分線交⊙O于F,E為CF延長線上一點(diǎn),且∠EBF=∠GBF.
(1)求證:BE為⊙O切線;
(2)求證:BG2=FGCE;
(3)求OG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在四邊形ABCD中,AD=BC且AC⊥BD,點(diǎn)E,F(xiàn),G,H,P,Q分別是AB,BC,CD,DA,AC,BD的中點(diǎn).
求證:(1)四邊形EFGH是矩形;
(2)四邊形EQGP是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.以AB上某一點(diǎn)O為圓心作⊙O,使⊙O經(jīng)過點(diǎn)A和點(diǎn)D.
(1)判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若AC=3,∠B=30°.
①求⊙O的半徑;
②設(shè)⊙O與AB邊的另一個交點(diǎn)為E,求線段BD、BE與劣弧DE所圍成的陰影部分的圖形面積.(結(jié)果保留根號和π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com