如圖,已知正方形ABCD的面積為S.
(1)求作:四邊形A1B1C1D1,使得點(diǎn)A1和點(diǎn)A關(guān)于點(diǎn)B對(duì)稱,點(diǎn)B1和點(diǎn)B關(guān)于點(diǎn)C對(duì)稱,點(diǎn)C1和點(diǎn)C關(guān)于點(diǎn)D對(duì)稱,點(diǎn)D1和點(diǎn)D關(guān)于點(diǎn)A對(duì)稱;(只要求畫(huà)出圖形,不要求寫(xiě)作法)
(2)用S表示(1)中作出的四邊形A1B1C1D1的面積S1;
(3)若將已知條件中的正方形改為任意四邊形,面積仍為S,并按(1)的要求作出一個(gè)新的四個(gè)邊形,面積為S2,則S1與S2是否相等,為什么?

【答案】分析:(1)根據(jù)對(duì)稱的性質(zhì)可知.使得點(diǎn)A1和點(diǎn)A關(guān)于點(diǎn)B對(duì)稱,即是連接AB并延長(zhǎng)相同的長(zhǎng)度找到對(duì)應(yīng)點(diǎn)A′,其它三點(diǎn)同樣的方法找到對(duì)應(yīng)點(diǎn),順次連接.
(2)設(shè)正方形ABCD的邊長(zhǎng)為a,根據(jù)兩個(gè)正方形邊長(zhǎng)的比值,利用面積比等于相似比,來(lái)求小正方形的面積.
(3)相等.因?yàn)橐粋(gè)四邊形可以分成兩個(gè)三角形,根據(jù)三角形的面積公式,等底等高的三角形面積相等.
解答:解:(1)如圖①所示.

(2)設(shè)正方形ABCD的邊長(zhǎng)為a,
則AA1=2a,S△AA1D1=•AA1•AD1=a2,
同理,S△BB1A1=S△CC1B1=S△DD1C1=a2
∴S1=S△AA1D1+S△BB1A1+S△CC1B1+S△DD1C1+S正方形ABCD=5a2=5S.
(本問(wèn)也可以先證明四邊形A1B1C1D1是正方形,再求出其邊長(zhǎng)為a,從而算出S四邊形A1B1C1D1=5S)

(3)S1=S2
理由如下:
首先畫(huà)出圖形②,連接BD、BD1,
∵△BDD1中,AB是中線,
∴S△ABD1=S△ABD
又∵△AA1D1中,BD1是中線,
∴S△ABD1=S△A1BD1
∴S△AA1D1=2S△ABD
同理,得S△CC1B1=2S△CBD
∴S△AA1D1+S△CC1B1=2(S△ABD+S△CBD)=2S.
同理,得S△BA1B1+S△DD1C1=2S,
∴S2=S△AA1D1+S△BB1A1+S△CC1B1+S△DD1C1+S四邊形ABCD=5S.
由(2)得,S1=5S.
∴S1=S2
點(diǎn)評(píng):本題是一道綜合性很強(qiáng)的題,綜合了軸對(duì)稱,正方形的面積,及四邊形,三角形的面積,所以我們學(xué)生學(xué)知識(shí)一定不要機(jī)械的學(xué),要會(huì)聯(lián)系起來(lái).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊AB與正方形AEFM的邊AM在同一直線上,直線BE與DM交于點(diǎn)N.求證:BN⊥DM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•北碚區(qū)模擬)如圖,已知正方形ABCD,點(diǎn)E是BC上一點(diǎn),點(diǎn)F是CD延長(zhǎng)線上一點(diǎn),連接EF,若BE=DF,點(diǎn)P是EF的中點(diǎn).
(1)求證:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方形ABCD,點(diǎn)E在BC邊上,將△DCE繞某點(diǎn)G旋轉(zhuǎn)得到△CBF,點(diǎn)F恰好在AB邊上.
(1)請(qǐng)畫(huà)出旋轉(zhuǎn)中心G (保留畫(huà)圖痕跡),并連接GF,GE;
(2)若正方形的邊長(zhǎng)為2a,當(dāng)CE=
a
a
時(shí),S△FGE=S△FBE;當(dāng)CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 時(shí),S△FGE=3S△FBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方形ABCD的對(duì)角線交于O,過(guò)O點(diǎn)作OE⊥OF,分別交AB、BC于E、F,若AE=4,CF=3,則EF的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,E是AC上的一點(diǎn),過(guò)點(diǎn)A作AG⊥BE,垂足為G,AG交BD于點(diǎn)F.
(1)試說(shuō)明OE=OF;
(2)當(dāng)AE=AB時(shí),過(guò)點(diǎn)E作EH⊥BE交AD邊于H.若該正方形的邊長(zhǎng)為1,求AH的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案