【題目】如圖,四邊形ABCD中,CDAB,∠ABC=90°,AB=BC,將BCD繞點B逆時針旋轉(zhuǎn)90°得到BAE,連接CE,過點BBGCE于點F,交AD于點G.

(1)如圖1CD=AB.

①求證:四邊形ABCD是正方形;

②求證:GAD中點;

(2)如圖2,若CD<AB,請判斷G是否仍然是AD的中點?若是,請證明:若不是,請說理由.

【答案】(1)①見解析;②見解析;(2)是,證明見解析.

【解析】

1)①由旋轉(zhuǎn)的性質(zhì)可得:AB=BC,進而得到ABCD平行且相等,判定四邊形ABCD為平行四邊形,再根據(jù)有一組鄰邊相等及有一個內(nèi)角是90°,判定其為正方形.

②設(shè)ABEC交于P點,證PAE≌△PBC≌△GAB,即可證明.

2)延長CD、BG,相交于點M,延長EACM于點N.BCM≌△CNEABG≌△DMG即可得證.

(1)①由旋轉(zhuǎn)的性質(zhì)可得:AB=BC

CD=AB

AB=BC=CD

又∵CDAB,

∴四邊形ABCD是平行四邊形

因為∠ABC=90°,AB=BC

∴平行四邊形ABCD是正方形.

②設(shè)ABEC交于P點,

BGCE,∠ABC=90°,

∴∠PCB+BPC=90°,∠ABG+BPC=90°

∴∠PCB=ABG

又∵BC=AB,ABC=BAG=90°

PBC≌△GAB

AG=AP

又∵AE=BC,ABC=EAB=90°,EDBC

∴∠BCP=AEP

PAE≌△PBC

AP=PB= AB

AG=AD

GAD中點

2G仍然是AD的中點;

證明:延長CD、BG,相交于點M,延長EACM于點N.

由旋轉(zhuǎn)可知,

ABEN,AECD

∴四邊形ABCN是正方形.

ANCNBC,ANCM

易證:BCM≌△CNE

CMNE, CMCDNEAE,即:DMAN

ABANDM.

∴△ABG≌△DMG

AGDG.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等邊△AOC的周長為3,作ODAC于點D,在x軸上取點C1,使CC1DC,以CC1為邊作等邊△A1CC1;作CD1A1C1于點D1,在x軸上取點C2,使C1C2D1C1,以C1C2為邊作等邊△A2C1C2;作C1D2A2C2于點D2,在x軸上取點C,使C2C3D2C2,以C2C3為邊作等邊△A3C2C3;,且點A,A1,A2A3,都在第一象限,如此下去,則等邊△A2019C2018C2019的頂點A2019坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,∠ABC=∠ADC,對角線AC、BD交于點O,AOBODE平分∠ADCBC于點E,連接OE

1)求證:四邊形ABCD是矩形;

2)若AB2,求△OEC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】折紙飛機是我們兒時快樂的回憶,現(xiàn)有一張長為290mm,寬為200mm的白紙,如圖所示,以下面幾個步驟折出紙飛機:(說明:第一步:白紙沿著EF折疊,AB邊的對應邊AB′與邊CD平行,將它們的距離記為x;第二步:將EM,MF分別沿著MH,MG折疊,使EMMF重合,從而獲得邊HGAB′的距離也為x),則PD=______mm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量(單位:m3)和使用了節(jié)木龍頭50天的日用水量,得到頻數(shù)分布表如下:

1未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用水量x

0≤x<0.1

0.1≤x<0.2

0.2≤x<0.3

0.3≤x<0.4

0.4≤x<0.5

0.5≤x<0.6

0.6≤x≤0.7

頻數(shù)

1

3

2

4

9

26

5

2使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用水量x

0≤x<0.1

0.1≤x<0.2

0.2≤x<0.3

0.3≤x<0.4

0.4≤x<0.5

0.5≤x<0.6

頻數(shù)

1

5

13

10

16

5

(1)估計該家庭使用節(jié)水龍頭后,日用水量小于0.3 m3的概率;

(2)估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在范圍的組中值作代表.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司購買一批玻璃杯和保溫杯,計劃用2000元購買玻璃杯,用2800元購買保溫杯.已知一個保溫杯比一個玻璃杯貴10元.該公司購買的玻璃杯與保溫杯的數(shù)量能相同嗎?

(1)根據(jù)題意,甲和乙兩同學都先假設(shè)該公司購買的玻璃杯與保溫杯的數(shù)量能相同,并分別列出的方程如下:;=10,根據(jù)兩位同學所列的方程,請你分別指出未知數(shù)x,y表示的意義:x表示 ;y表示

(2)任選其中一個方程說明該公司購買的玻璃杯與保溫杯的數(shù)量能否相同.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校文學社為了解學生課外閱讀情況,抽樣調(diào)查了部分學生每周用于課外閱讀的時間,過程如下:

數(shù)據(jù)收集:從全校隨機抽取20名學生,進行了每周用于課外閱讀時間的調(diào)查,數(shù)據(jù)如下(單位:min)

30

60

81

50

40

110

130

146

90

100

60

81

120

140

70

81

10

20

100

81

整理數(shù)據(jù):按如下分段整理樣本數(shù)據(jù)并補全表格:

課外閱讀時間x(min)

0≤x<40

40≤x<80

80≤x<120

120≤x<160

等級

D

C

B

A

人數(shù)

3

____

8

____

分析數(shù)據(jù):補全下列表格中的統(tǒng)計量:

平均數(shù)

中位數(shù)

眾數(shù)

80

____

____

得出結(jié)論:

⑴用樣本中的統(tǒng)計量估計該校學生每周用于課外閱讀時間的情況等級為_____

⑵如果該校現(xiàn)有學生400人,估計等級為“B”的學生有多少人?

⑶假設(shè)平均閱讀一本課外書的時間為320分鐘,請你選擇樣本中的一種統(tǒng)計量估計該校學生每人一年(52周計算)平均閱讀多少本課外書?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax22ax2的圖象(記為拋物線C1)頂點為M,直線ly2xax軸,y軸分別交于A,B

1)對于拋物線C1,以下結(jié)論正確的是   

對稱軸是:直線x1;頂點坐標(1,﹣a2);拋物線一定經(jīng)過兩個定點.

2)當a0時,設(shè)△ABM的面積為S,求Sa的函數(shù)關(guān)系;

3)將二次函數(shù)yax22ax2的圖象C1繞點Pt,﹣2)旋轉(zhuǎn)180°得到二次函數(shù)的圖象(記為拋物線C2),頂點為N

當﹣2x1時,旋轉(zhuǎn)前后的兩個二次函數(shù)y的值都會隨x的增大而減小,求t的取值范圍;

a1時,點Q是拋物線C1上的一點,點Q在拋物線C2上的對應點為Q',試探究四邊形QMQ'N能否為正方形?若能,求出t的值,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人加工同一種零件,甲每天加工的數(shù)量是乙每天加工數(shù)量的 1.5 倍,兩人各加工 600 個這種零件,甲比乙少用 5 天.

1)求甲、乙兩人每天各加工多少個這種零件?

2)已知甲、乙兩人加工這種零件每天的加工費分別是 150 元和 120 元,現(xiàn)有 3000 個這種零件的加工任務(wù),甲單獨加工一段時間后另有安排,剩余任務(wù)由乙單獨完成.如果總加工費不超過 7800 元,那么甲至少加工了多少天?

查看答案和解析>>

同步練習冊答案