【題目】已知二次函數(shù)(m為常數(shù)),當(dāng)時,的最大值是15,則的值是( )
A.-10和6B.-19和C.6和D.-19和6
【答案】D
【解析】
根據(jù)題目中的函數(shù)解析式和當(dāng)-2≤x≤4時,y的最大值是15,利用分類討論的方法可以求得m的值,本題得以解決.
解:二次函數(shù)y=-x2+mx+m= ,
當(dāng)4<時,即m>8,
在-2≤x≤4時,x=4時取得最大值,則15=-42+4m+m,得m=6.2(舍去);
當(dāng)<-2時,即m<-4,
在-2≤x≤4時,x=-2時取得最大值,則15=-22-2m+m,得m=-19(舍去),
當(dāng)-2≤≤4時,即-4≤m≤8,
在-2≤x≤4時,x=時取得最大值,則15=+m,得m1=6,m2=-10(舍去),
由上可得,m的值是-19或6,
故答案為:-19或6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=2,AD=4,對角線AC,BD相交于點O,且E,F,G,H分別是AO,BO,CO,DO的中點,則下列說法正確的是( )
A.EH=HGB.四邊形EFGH是平行四邊形
C.AC⊥BDD.的面積是的面積的2倍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,O為AB上一點,經(jīng)過點A、D的⊙O分別交邊AB、AC于點E、F.
(1)求證:BC是⊙O的切線;
(2)若BE=16,sinB=,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,點E在BC上,AE=AD,DF⊥AE,垂足為F.
(1)求證.DF=AB;
(2)若∠FDC=30°,且AB=4,求AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,將矩形對折,得到折痕;沿著折疊,點的對應(yīng)點為與的交點為;再沿著折疊,使得與重合,折痕為,此時點的對應(yīng)點為.下列結(jié)論:①是直角三角形:②點在同一條直線上;③;④;⑤點是的外心,其中正確的個數(shù)為( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為培養(yǎng)學(xué)生庭好的學(xué)習(xí)習(xí)慣,某校九年級年級組舉行“整理錯題集“的征集展示活動,并隨機對部分學(xué)生三年“整理題集”中收集的錯題數(shù)x進行了抽樣調(diào)查,根據(jù)收集的數(shù)據(jù)繪制了下面不完整的統(tǒng)計圖表.
分組 | 頻數(shù) | 頻率 |
第一組(0≤x<120) | 3 | 0.15 |
第二組(120≤x<160) | 8 | a |
第三組(160≤x<200) | 7 | 0.35 |
第四組(200≤x<240) | b | 0.1 |
請你根據(jù)圖表中的信息完成下列問題:
(1)頻數(shù)分布表中a= ,b= ,并將統(tǒng)計圖補充完整;
(2)如果該校九年級共有學(xué)生360人,估計整理的錯題數(shù)在160或160題以上的學(xué)生有多少人?
(3)已知第一組中有兩個是甲班學(xué)生,第四組中有一個是甲班學(xué)生,老師隨機從這兩個組中各選一名學(xué)生談?wù)礤e題的體會,則所選兩人正好都是甲班學(xué)生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為推進生態(tài)文明建設(shè),甲、乙兩工程隊同時為嶗山區(qū)的兩條綠化帶鋪設(shè)草坪.兩隊所鋪設(shè)草坪的面積(米)與施工時間(時)之間關(guān)系的近似可以用此圖象描述.請結(jié)合圖象解答下列問題:
(1)從工作2小時開始,施工方從乙隊抽調(diào)兩人對草坪進行灌溉,乙隊速度有所降低,求乙隊在工作2小時后與的函數(shù)關(guān)系式;
(2)求乙隊降速后,何時鋪設(shè)草坪面積為甲隊的?
(3)乙隊降速后,甲乙兩隊鋪設(shè)草坪速度之比為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+5a與x軸有兩個交點是點A和點B(點B在點A左邊)且拋物線交y軸于負(fù)半軸,a與b異號.則下列說法中正確的一項是( )
A.若拋物線上僅有一點C(m,m)則a的取值范圍為
B.方程ax2+bx+3a=0必有兩個不相等的實數(shù)根
C.當(dāng)b=6a時,點B(-1,0),點A(5,0)
D.a與b滿足大小關(guān)系為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)小組對函數(shù)y1=圖象和性質(zhì)進行探究.當(dāng)x=4時,y1=0.
(1)當(dāng)x=5時,求y1的值;
(2)在給出的平面直角坐標(biāo)系中,補全這個函數(shù)的圖象,并寫出這個函數(shù)的一條性質(zhì);
(3)進一步探究函數(shù)圖象并解決問題:已知函數(shù)y2=﹣的圖象如圖所示,結(jié)合函數(shù)y1的圖象,直接寫出不等式y1≥y2的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com