【題目】如圖,二次函數(shù)的圖象關(guān)于y軸對(duì)稱且交y軸負(fù)半軸于點(diǎn)C,與x軸交于點(diǎn)A、B,已知AB=6,OC=4,⊙C的半徑為,P為⊙C上一動(dòng)點(diǎn).
(1)求出二次函數(shù)的解析式;
(2)是否存在點(diǎn)P,使得△PBC為直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)連接PB,若E為PB的中點(diǎn),連接OE,則OE的最大值是多少?
【答案】(1)二次函數(shù)解析式為;(2)點(diǎn)P的坐標(biāo)為(﹣1,﹣2)或(,﹣)或(,﹣﹣4)或(﹣, ﹣4);(3)OE的最大值為
【解析】分析:(1)首先確定A、B、C的坐標(biāo),再運(yùn)用待定系數(shù)法即可求出拋物線的解析式;
(2)①當(dāng)PB與⊙相切時(shí),△PBC為直角三角形,如圖1,連接BC,根據(jù)勾股定理得到BC=5,BP2=2,過(guò)P2作P2E⊥x軸于E,P2F⊥y軸于F,根據(jù)相似三角形的性質(zhì)得到,設(shè)OC=P2E=2x,FP2=OE=x,得到BE=3-x,CF=2x-4,于是得到FP2=,EP2=,求得P2(,-),過(guò)P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(-1,-2),②當(dāng)BC⊥PC時(shí),△PBC為直角三角形,根據(jù)相似三角形的判定和性質(zhì)即可得到結(jié)論;
(3)如圖中,連接AP,根據(jù)OB=OA,BE=EP,推出OE=AP,可知當(dāng)AP最大時(shí),OE的值最大,
詳解:(1)∵AB=6,OC=4且圖象關(guān)于軸對(duì)稱
∴A(-3,0),B(3,0),C(0,﹣4)
設(shè)二次函數(shù)解析式為
將A(-3,0)代入得
∴二次函數(shù)解析式為
(2)存在點(diǎn)P,使得△PBC為直角三角形.
①當(dāng)PB與⊙相切時(shí),△PBC為直角三角形,如圖,連接BC.
∵OB=3.OC=4,
∴BC=5
∵CP2⊥BP2,CP2=
∴BP2=2過(guò)P2作P2E⊥x軸于E,P2F⊥y軸于F
則△CP2F∽△BP2E,四邊形OCP2B是矩形
∴,
設(shè)OF=P2E=2x,CP2=OE=x
∴BE=3﹣x,CF=2x﹣4
∴=2
∴x=,2x=,即FP2=,EP2=
∴P2(,﹣)
過(guò)P1作P1G⊥x軸于G,P1H⊥y軸于H.同理求得P1(﹣1,﹣2)
②當(dāng)BC⊥PC時(shí),△PBC為直角三角形
過(guò)P4作P4H⊥y軸于H
則△BOC∽△CHP4
∴
∴CH=,P4H=
∴P4(,﹣﹣4)
同理P3(﹣, ﹣4)
綜上所述:點(diǎn)P的坐標(biāo)為(﹣1,﹣2)或(,﹣)或(,﹣﹣4)或(﹣, ﹣4).
(3)如圖,連接AP
∵OB=OA,BE=EP
∴OE為△ABP的中位線
∴
∴當(dāng)AP最大時(shí),OE最大
∵當(dāng)P在AC的延長(zhǎng)線上時(shí),AP最大,最大值為
∴OE的最大值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是⊙O的直徑,AC是⊙O的切線,BC交⊙O于點(diǎn)D(如圖1).
(1)若AB=2,∠B=30°,求CD的長(zhǎng);
(2) 取AC的中點(diǎn)E,連結(jié)D、E(如圖2),求證:DE與⊙O相切.
【答案】(1);(2)見(jiàn)解析
【解析】分析:連接AD ,根據(jù)AC是⊙O的切線,AB是⊙O的直徑,得到∠CAB=∠ADB=90°,根據(jù)∠B=30°,解直角三角形求得的長(zhǎng)度.
連接OD,AD.根據(jù)DE=CE=EA,∠EDA=∠EAD. 根據(jù)OD=OA,得到
∠ODA=∠DAO,得到∠EDA+∠ODA=∠EAD+∠DAO.得到∠EDO=90°即可.
詳解:(1)如圖,連接AD ,
∵AC是⊙O的切線,AB是⊙O的直徑,
∴∠CAB=∠ADB=90°,
∴ΔCAB,ΔCAD均是直角三角形.
∴∠CAD=∠B=30°.
在RtΔCAB中,AC=ABtan30°=
∴在RtΔCAD中,CD=ACsin30°=
(2)如圖,連接OD,AD.
∵AC是⊙O的切線,AB是⊙O的直徑,
∴∠CAB=∠ADB=∠ADC=90°,
又∵E為AC中點(diǎn),
∴DE=CE=EA,
∴∠EDA=∠EAD.
∵OD=OA,
∴∠ODA=∠DAO,
∴∠EDA+∠ODA=∠EAD+∠DAO.
即:∠EDO=∠EAO=90°.
又點(diǎn)D在⊙O上,因此DE與⊙O相切.
點(diǎn)睛:考查解直角三角形,圓周角定理,切線的判定與性質(zhì)等,屬于圓的綜合題,比較基礎(chǔ).注意切線的證明方法,是高頻考點(diǎn).
【題型】解答題
【結(jié)束】
21
【題目】課外活動(dòng)時(shí)間,甲、乙、丙、丁4名同學(xué)相約進(jìn)行羽毛球比賽.
(1)如果將4名同學(xué)隨機(jī)分成兩組進(jìn)行對(duì)打,求恰好選中甲乙兩人對(duì)打的概率;
(2)如果確定由丁擔(dān)任裁判,用“手心、手背”的方法在另三人中競(jìng)選兩人進(jìn)行比賽.競(jìng)選規(guī)則是:三人同時(shí)伸出“手心”或“手背”中的一種手勢(shì),如果恰好只有兩人伸出的手勢(shì)相同,那么這兩人上場(chǎng),否則重新競(jìng)選.這三人伸出“手心”或“手背”都是隨機(jī)的,求一次競(jìng)選就能確定甲、乙進(jìn)行比賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解家長(zhǎng)和學(xué)生參與“防溺水教育”的情況,在本校學(xué)生中隨機(jī)抽取部分學(xué)生作調(diào)查,把收集的數(shù)據(jù)分為以下4類情形:
A.僅學(xué)生自己參與 B.家長(zhǎng)和學(xué)生一起參與
C.僅家長(zhǎng)自己參與 D.家長(zhǎng)和學(xué)生都未參與
請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)在這次抽樣調(diào)查中,共調(diào)查了_________名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并在扇形統(tǒng)計(jì)圖中計(jì)算類所對(duì)應(yīng)扇形的圓心角的度數(shù).
(3)根據(jù)抽樣調(diào)查結(jié)果,估計(jì)該校1500名學(xué)生中“家長(zhǎng)和學(xué)生都未參與”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校初三(1)班部分同學(xué)接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),收集整理數(shù)據(jù)后,老師將減壓方式分為五類,并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題.
(1)初三(1)班接受調(diào)查的同學(xué)共有多少名;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中的“體育活動(dòng)C”所對(duì)應(yīng)的圓心角度數(shù);
(3)若喜歡“交流談心”的5名同學(xué)中有三名男生和兩名女生;老師想從5名同學(xué)中任選兩名同學(xué)進(jìn)行交流,直接寫出選取的兩名同學(xué)都是女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小賢為了體驗(yàn)四邊形的不穩(wěn)定性,將四根木條用釘子釘成一個(gè)矩形框架ABCD,B與D兩點(diǎn)之間用一根橡皮筋拉直固定,然后向右扭動(dòng)框架,觀察所得四邊形的變化,下列判斷錯(cuò)誤的是( )
A. 四邊形ABCD由矩形變?yōu)槠叫兴倪呅?/span> B. BD的長(zhǎng)度增大
C. 四邊形ABCD的面積不變 D. 四邊形ABCD的周長(zhǎng)不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小蟲(chóng)從點(diǎn)A出發(fā)在一條直線上來(lái)回爬行,假定向右爬行的路程記為正數(shù),向左爬行的路程記為負(fù)數(shù),爬行的路程依次為:(單位:cm)①+5,②-3,③+10,④-8,⑤-6,⑥+11,⑦-9.
(1)小蟲(chóng)最后是否回到出發(fā)點(diǎn)A,說(shuō)明理由;
(2)小蟲(chóng)在第幾次爬行后離點(diǎn)A最遠(yuǎn),此時(shí)距離點(diǎn)A多少厘米?
(3)在爬行過(guò)程中,如果每爬行1厘米獎(jiǎng)勵(lì)一粒芝麻,那么小蟲(chóng)一共得到多少粒芝麻?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A1,A2,…,An均在直線y=x-1上,點(diǎn)B1,B2,…,Bn均在雙曲線y=-上,并且滿足A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,…,AnBn⊥x軸,BnAn+1⊥y軸,…,記點(diǎn)An的橫坐標(biāo)為an(n為正整數(shù)).若a1=-1,則a2018=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017浙江省湖州市,第23題,10分)湖州素有魚(yú)米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢(shì),一次性收購(gòu)了20000kg淡水魚(yú),計(jì)劃養(yǎng)殖一段時(shí)間后再出售.已知每天放養(yǎng)的費(fèi)用相同,放養(yǎng)10天的總成本為30.4萬(wàn)元;放養(yǎng)20天的總成本為30.8萬(wàn)元(總成本=放養(yǎng)總費(fèi)用+收購(gòu)成本).
(1)設(shè)每天的放養(yǎng)費(fèi)用是a萬(wàn)元,收購(gòu)成本為b萬(wàn)元,求a和b的值;
(2)設(shè)這批淡水魚(yú)放養(yǎng)t天后的質(zhì)量為m(kg),銷售單價(jià)為y元/kg.根據(jù)以往經(jīng)驗(yàn)可知:m與t的函數(shù)關(guān)系為;y與t的函數(shù)關(guān)系如圖所示.
①分別求出當(dāng)0≤t≤50和50<t≤100時(shí),y與t的函數(shù)關(guān)系式;
②設(shè)將這批淡水魚(yú)放養(yǎng)t天后一次性出售所得利潤(rùn)為W元,求當(dāng)t為何值時(shí),W最大?并求出最大值.(利潤(rùn)=銷售總額﹣總成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“水是生命之源”,某市自來(lái)水公司為了鼓勵(lì)居民節(jié)約用水,規(guī)定按以下標(biāo)準(zhǔn)收取水費(fèi):
用水量/月 | 單價(jià)(元/m3) |
不超過(guò)20m3 | 2.8 |
超過(guò)20m3的部分 | 3.8 |
另:每立方米用水加收0.2元的城市污水處理費(fèi) |
(1)根據(jù)上表,用水量每月不超過(guò)20m3,實(shí)際每立方米收水費(fèi)_____元;如果1月份某用戶用水量為19m3,那么該用戶1月份應(yīng)該繳納水費(fèi)____元;
(2)某用戶2月份共繳納水費(fèi)80元,那么該用戶2月份用水多少m3?
(3)若該用戶水表3月份出了故障,只有70%的用水量記入水表中,這樣該用戶在3月份只繳納了58.8元水費(fèi),問(wèn)該用戶3月份實(shí)際應(yīng)該繳納水費(fèi)多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com