【題目】如圖,在△ABC中,DAB邊上任意一點(diǎn),EBC邊中點(diǎn),過點(diǎn)CAB的平行線,交DE的延長(zhǎng)線于點(diǎn)F,連接BF,CD.

(1)求證:四邊形CDBF是平行四邊形;

(2)若∠FDB=30°,ABC=45°,BC=4,求DF的長(zhǎng).

【答案】(1)證明見解析;(2)8.

【解析】

(1)先證明出△CEF≌△BED,得出CF=BD即可證明四邊形CDBF是平行四邊形;

(2)EM⊥DB于點(diǎn)M,根據(jù)平行四邊形的性質(zhì)求出BE,DF的值,再根據(jù)三角函數(shù)值求出EM的值,∠EDM=30°,由此可得出結(jié)論.

(1)證明:∵CFAB,

∴∠ECF=EBD.

EBC中點(diǎn),

CE=BE.

∵∠CEF=BED,

∴△CEF≌△BED.

CF=BD.

∴四邊形CDBF是平行四邊形.

(2)解:如圖,作EMDB于點(diǎn)M,

∵四邊形CDBF是平行四邊形,BC=,

,DF=2DE.

RtEMB中,EM=BEsinABC=2,

RtEMD中,∵∠EDM=30°,

DE=2EM=4,

DF=2DE=8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,CACB,ABCDAB于點(diǎn)D,CD5,點(diǎn)O和點(diǎn)E在線段CD上,ED1,點(diǎn)P在邊AB上,以E為圓心,EP為半徑的圓與AB邊的另一個(gè)交點(diǎn)為點(diǎn)Q(點(diǎn)P在點(diǎn)Q的左側(cè)),以O為圓心,OC為半徑的圓O恰好經(jīng)過PQ兩點(diǎn),聯(lián)結(jié)CP,設(shè)線段AP的長(zhǎng)度為x

1)當(dāng)圓E恰好經(jīng)過點(diǎn)O時(shí),求圓E的半徑;

2)聯(lián)結(jié)CQ,設(shè)∠PCQ的正切值為y,求yx的函數(shù)關(guān)系式及定義域;

3)若∠PED3PCE,求SPCQ的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,直徑CD垂直弦AB于點(diǎn)E,且OEDE.點(diǎn)P上一點(diǎn)(點(diǎn)P不與點(diǎn)B,C重合),連結(jié)AP,BPCP,ACBC.過點(diǎn)CCFBP于點(diǎn)F.給出下列結(jié)論:①△ABC是等邊三角形;②在點(diǎn)PBC的運(yùn)動(dòng)過程中,的值始終等于.則下列說法正確的是( 。

A.①,②都對(duì)B.①對(duì),②錯(cuò)C.①錯(cuò),②對(duì)D.①,②都錯(cuò)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠C=90°AC=2,BC=4,點(diǎn)D、E分別是邊BC、AB的中點(diǎn),將△BDE繞著點(diǎn)B旋轉(zhuǎn),點(diǎn)D、E旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)分別為點(diǎn)D′、E′,當(dāng)直線D′E′經(jīng)過點(diǎn)A時(shí),線段CD′的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:拋物線x軸于AC兩點(diǎn),交y軸于點(diǎn)B,且OB=2CO.

(1)求二次函數(shù)解析式;

(2)在二次函數(shù)圖象位于x軸上方部分有兩個(gè)動(dòng)點(diǎn)MN,且點(diǎn)N在點(diǎn)M的左側(cè),過MNx軸的垂線交x軸于點(diǎn)G、H兩點(diǎn),當(dāng)四邊形MNHG為矩形時(shí),求該矩形周長(zhǎng)的最大值;

(3) 拋物線對(duì)稱軸上是否存在點(diǎn)P,使得△ABP為直角三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

1該二次函數(shù)圖象的對(duì)稱軸是x ;

2若該二次函數(shù)的圖象開口向下當(dāng)時(shí), 的最大值是2,求當(dāng)時(shí), 的最小值;

3)若對(duì)于該拋物線上的兩點(diǎn), ,當(dāng), 時(shí)均滿足,請(qǐng)結(jié)合圖象,直接寫出的最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司經(jīng)銷的一種產(chǎn)品每件成本為40元,要求在90天內(nèi)完成銷售任務(wù).已知該產(chǎn)品90天內(nèi)每天的銷售價(jià)格與時(shí)間(第x天)的關(guān)系如下表:

時(shí)間(第x天)

1x50

50x90

x+50

90

任務(wù)完成后,統(tǒng)計(jì)發(fā)現(xiàn)銷售員小王90天內(nèi)日銷售量p(件)與時(shí)間(第x天)滿足一次函數(shù)關(guān)系p=﹣2x+200.設(shè)小王第x天銷售利潤(rùn)為W元.

1)直接寫出Wx之間的函數(shù)關(guān)系式,井注明自變量x的取值范圍;

2)求小生第幾天的銷售量最大?最大利潤(rùn)是多少?

3)任務(wù)完成后,統(tǒng)計(jì)發(fā)現(xiàn)平均每個(gè)銷售員每天銷售利潤(rùn)為4800公司制定如下獎(jiǎng)勵(lì)制度:如果一個(gè)銷售員某天的銷售利潤(rùn)超過該平均值,則該銷售員當(dāng)天可獲得200元獎(jiǎng)金.請(qǐng)計(jì)算小王一共可獲得多少元獎(jiǎng)金?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不超過100的自然數(shù)中,將凡是35的倍數(shù)的數(shù)相加,其和為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB3BC6cm,動(dòng)點(diǎn)E和動(dòng)點(diǎn)F1cm/s的速度從點(diǎn)A出發(fā),分別沿折線ADC和折線ABC運(yùn)動(dòng)到點(diǎn)C停止;同時(shí),動(dòng)點(diǎn)G和動(dòng)點(diǎn)H也以1cm/s的速度從點(diǎn)C出發(fā),分別沿折線CBA和折線CDA運(yùn)動(dòng)到點(diǎn)A停止,若點(diǎn)EF,G,H同時(shí)出發(fā)了ts,記封閉圖形EFGH的面積為Scm2,則S關(guān)于t的函數(shù)圖象大致為(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案