【題目】已知四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABC=2∠D,連接OC、OA、AC.
(1)如圖①,求∠OCA的度數(shù);
(2)如圖②,連接OB、OB與AC相交于點(diǎn)E,若∠COB=90°,OC=2 ,求BC的長和陰影部分的面積.

【答案】
(1)解:∵四邊形ABCD是⊙O的內(nèi)接四邊形,

∴∠ABC+∠D=180°,

∵∠ABC=2∠D,

∴∠D+2∠D=180°,

∴∠D=60°,

∴∠AOC=2∠D=120°,

∵OA=OC,

∴∠OAC=∠OCA=30°


(2)解:∵∠COB=3∠AOB,

∴∠AOC=∠AOB+3∠AOB=120°,

∴∠AOB=30°,

∴∠COB=∠AOC﹣∠AOB=90°,

在Rt△OCE中,OC=2 ,

∴OE=OCtan∠OCE=2 tan30°=2 × =2,

∴SOEC= OEOC= ×2×2 =2

∴S扇形OBC= =3π,

∴S陰影=S扇形OBC﹣SOEC=3π﹣2


【解析】(1)根據(jù)四邊形ABCD是⊙O的內(nèi)接四邊形得到∠ABC+∠D=180°,根據(jù)∠ABC=2∠D得到∠D+2∠D=180°,從而求得∠D=60°,最后根據(jù)OA=OC得到∠OAC=∠OCA=30°;(2)由∠COB為直角,然后利用S陰影=S扇形OBC﹣SOEC求解.
【考點(diǎn)精析】掌握圓內(nèi)接四邊形的性質(zhì)和扇形面積計(jì)算公式是解答本題的根本,需要知道把圓分成n(n≥3):1、依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形2、經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,∠A=30°,點(diǎn)P從點(diǎn)A出發(fā)以2cm/s的速度沿折線A—C—B運(yùn)動,點(diǎn)Q從點(diǎn)A出發(fā)以a(cm/s)的速度沿AB運(yùn)動,P,Q兩點(diǎn)同時(shí)出發(fā),當(dāng)某一點(diǎn)運(yùn)動到點(diǎn)B時(shí),兩點(diǎn)同時(shí)停止運(yùn)動.設(shè)運(yùn)動時(shí)間為x(s),△APQ的面積為y(cm2),y關(guān)于x的函數(shù)圖象由C1 , C2兩段組成,如圖2所示.

(1)求a的值;
(2)求圖2中圖象C2段的函數(shù)表達(dá)式;
(3)當(dāng)點(diǎn)P運(yùn)動到線段BC上某一段時(shí)△APQ的面積,大于當(dāng)點(diǎn)P在線段AC上任意一點(diǎn)時(shí)△APQ的面積,求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大家知道|1|=|1-0|,它的幾何意義是,在數(shù)軸上表示數(shù)1的點(diǎn)與原點(diǎn)(即表示0的點(diǎn))之間的距離.又如式子|4-2|,它在數(shù)軸上的意義是表示數(shù)4的點(diǎn)和表示數(shù)2的點(diǎn)之間的距離.

類似地,(1)寫出式子|a-5|在數(shù)軸上的意義是,

(2)寫出式子|b+4|在數(shù)軸上的意義是

(3)若|x+2|=3,則x=.

(4)若|x-1|+|x-2|=3,則x_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長是1),ABC的頂點(diǎn)均在格點(diǎn)上,請?jiān)谒o的直角坐標(biāo)系中解答下列問題:

作出△繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的△AB1C1,再作出△AB1C1關(guān)于原點(diǎn)O成中心對稱的△A1B2C2

(2)請直接寫出以A1、B2、C2為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo) .(寫出一個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB與⊙O相切于點(diǎn)A,AC、CD是⊙O的兩條弦,且CD∥AB,若⊙O的半徑為 ,CD=4,則弦AC的長為(
A.2
B.3
C.4
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要建一個(gè)長方形養(yǎng)雞場,養(yǎng)雞場的一邊靠墻(墻長25米),另三邊用竹籬笆圍成,竹籬笆的長為40米,若要圍成的養(yǎng)雞場的面積為180平方米,求養(yǎng)雞場的寬各為多少米,設(shè)與墻平行的一邊長為x米.
(1)填空:(用含x的代數(shù)式表示)另一邊長為米;
(2)列出方程,并求出問題的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們都知道:|5|在數(shù)軸上表示數(shù)5的點(diǎn)與原點(diǎn)的距離,而|5-(-2)|表示5-2之差的絕對值,實(shí)際上也可理解為5-2兩數(shù)在數(shù)軸上所對應(yīng)的兩點(diǎn)之間的距離.請你借助數(shù)軸進(jìn)行以下探索:

(1)表示 的距離.

(2)數(shù)軸上表示x 7的兩點(diǎn)之間的距離可以表示為 .

(3)如果|x-2|=5,則x= .

(4)同理|x+1|+|x-2|表示數(shù)軸上有理數(shù)x所對應(yīng)的點(diǎn)到-12所對應(yīng)的點(diǎn)的距離之和,請你找出所有符合條件的整數(shù)x,使得|x+1|+|x-2|=3,這樣的整數(shù)是 .

(5)由以上探索猜想對于任何有理數(shù)x,|x+3|+|x-6|的最小值是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)E在邊BC,如果點(diǎn)F是邊AD上的點(diǎn),那么CDFABE不一定全等的條件是(  )

A. DF=BE B. AF=CE

C. CF=AE D. CFAE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的運(yùn)算程序中,若開始輸入的x值為48,我們發(fā)現(xiàn)第一次輸出的結(jié)果為24,第二次輸出的結(jié)果為12,…,則第2018次輸出的結(jié)果為________

查看答案和解析>>

同步練習(xí)冊答案