【題目】金松科技生態(tài)農業(yè)養(yǎng)殖有限公司種植和銷售一種綠色羊肚菌,已知該羊肚菌的成本是12元/千克,規(guī)定銷售價格不低于成本,又不高于成本的兩倍.經(jīng)過市場調查發(fā)現(xiàn),某天該羊肚菌的銷售量y(千克)與銷售價格x(元/千克)的函數(shù)關系如下圖所示:
(1)求y與x之間的函數(shù)解析式;
(2)求這一天銷售羊肚菌獲得的利潤W的最大值;
(3)若該公司按每銷售一千克提取1元用于捐資助學,且保證每天的銷售利潤不低于3600元,問該羊肚菌銷售價格該如何確定.
【答案】(1)y;(2)5000元;(3)銷售價格確定為16≤x≤19或22≤x≤24
【解析】
(1)①當12≤x≤20時,設y=kx+b.代(12,2000),(20,400),求得k和b;②當20<x≤24時,y=400;
(2)分別寫出①當12≤x≤20時,②當20<x≤24時,相應的函數(shù)關系式并求得其最大值,兩者相比較,取較大者即可;
(3)分兩種情況:①當12≤x≤20時,②當20<x≤24時,分別令其W值等于或者大于等于3600,即可得解.
解:(1)①當12≤x≤20時,設y=kx+b.代(12,2000),(20,400),
得
解得
∴y=﹣200x+4400
②當20<x≤24時,y=400.
綜上,y=
(2)①當12≤x≤20時,
W=(x﹣12)y
=(x﹣12)(﹣200x+4400)
=﹣200(x﹣17)2+5000
當x=17時,W的最大值為5000;
②當20<x≤24時,
W=(x﹣12)y
=400x﹣4800.
當x=24時,W的最大值為4800.
∴最大利潤為5000元.
(3)①當12≤x≤20時,
W=(x﹣12﹣1)y
=(x﹣13)(﹣2000x+4400)
=﹣200(x﹣17.5)2+4050
令﹣200(x﹣17.5)2+4050=3600
x1=16,x2=19
∴定價為16≤x≤19
②當20<x≤24時,
W=400(x﹣13)=400x﹣5200≥3600
∴22≤x≤24.
綜上,銷售價格確定為16≤x≤19或22≤x≤24.
科目:初中數(shù)學 來源: 題型:
【題目】任大叔決定在承包的荒山上種櫻桃樹,第一次用1000元購進了一批樹苗,第二次又用1000元購進該種樹苗,但這次每棵樹苗的進價是第一次進價的2倍,購進數(shù)量比第次少了100棵;
(1)求第一次每棵樹苗的進價是多少元?
(2)一年后,樹苗的成活率為85%,每棵櫻桃樹平均產櫻桃30斤,任大叔將兩批櫻桃樹所產櫻桃按同一價格全部銷售完畢后,獲利不低于89800元,求每斤櫻桃的售價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)(a≠0)的圖象如圖所示,則下列命題中正確的是( 。
A. a >b>c
B. 一次函數(shù)y=ax +c的圖象不經(jīng)第四象限
C. m(am+b)+b<a(m是任意實數(shù))
D. 3b+2c>0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y1=的圖象與一次函數(shù)y2=ax+b的圖象相交于點A(1,4)和B(﹣2,n).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)請根據(jù)圖象直接寫出y1<y2時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的內切圓⊙O與BC,CA,AB分別相切于點D,E.F.且AB=5,AC=12,BC=13,則⊙O的半徑是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,E是AC中點.
(1)求證:DE是⊙O的切線;
(2)若AB=10,BC=6,連接CD,OE,交點為F,求OF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市銷售多種顏色的運動服裝,其中平均每天銷售紅、黃、藍、白四種顏色運動服的數(shù)量如表,由此繪制的不完整的扇形統(tǒng)計圖如圖:
(1)求表中m、n、α的值,并將扇形統(tǒng)計圖補充完整:表中m= ,n= ,α= ;
(2)為吸引更多的顧客,超市將上述扇形統(tǒng)計圖制成一個可自由轉動的轉盤,并規(guī)定:顧客在本超市購買商品金額達到一定的數(shù)目,就獲得一次轉動轉盤的機會.如果轉盤停止后,指針指向紅色服裝區(qū)域、黃色服裝區(qū)域,可分別獲得60元、20元的購物券.求顧客每轉動一次轉盤獲得購物券金額的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=4,sin∠ABC=,點D為射線BC上一點,聯(lián)結AD,過點B作BE⊥AD分別交射線AD、AC于點E、F,聯(lián)結DF,過點A作AG∥BD,交直線BE于點G.
(1)當點D在BC的延長線上時,如果CD=2,求tan∠FBC;
(2)當點D在BC的延長線上時,設AG=x,S△DAF=y,求y關于x的函數(shù)關系式(不需要寫函數(shù)的定義域);
(3)如果AG=8,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究
如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣3,0)、B兩點,與y軸相交于點.當x=﹣4和x=2時,二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC,BC.
(1)求拋物線的解析式;
(2)判斷△ABC的形狀,并說明理由;
(3)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動,當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,則t的值為 ,點P的坐標為 ;
(4)拋物線對稱軸上是否存在一點F,使得△ACF是以AC為直角邊的直角三角形?若不存在,請說明理由;若存在,請直接寫出點F的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com