【題目】平面內(nèi),如圖,在□ABCD中,AB=10,AD=15,,點(diǎn)P為AD邊上任意點(diǎn),連接PB,將PB繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PQ.
(1)當(dāng)∠DPQ= 10°時(shí),求∠APB的大;
(2)當(dāng) 時(shí),求點(diǎn)Q與點(diǎn)B間的距離(結(jié)果保留根號(hào));
(3)若點(diǎn)Q恰好落在口ABCD的邊所在的直線上,直接寫出PB旋轉(zhuǎn)到PQ所掃過(guò)的面積.(結(jié)果保留π).
【答案】(1)當(dāng)∠DPQ=10°時(shí),∠APB的值為80°或100°;(2);(3)PB旋轉(zhuǎn)到PQ所掃過(guò)的面積為32π或20π或16π.
【解析】
(1)根據(jù)題意畫出圖形分情況討論:①當(dāng)點(diǎn)Q在平行四邊形ABCD內(nèi)時(shí),②當(dāng)點(diǎn)Q在平行四邊形ABCD外時(shí),結(jié)合題意分別求得答案.
(2) 連接BQ,作PE⊥AB于E,由已知結(jié)合題意即可求得tan∠ABP=2,在Rt△APE中,根據(jù)正切函數(shù)定義可設(shè)PE=4k,則AE=3k,在Rt△PBE中,根據(jù)正切函數(shù)定義可得EB=2k,
由AB=AE+EB即可求得k值,從而可得PE=8,EB=4,在Rt△PBE中,根據(jù)勾股定理可求得PB長(zhǎng),由等腰直角三角形性質(zhì)可求得BQ長(zhǎng) .
(3)分三種情形分別求解即可; ①如圖,當(dāng)點(diǎn)Q落在直線BC上時(shí),作BE⊥AD于E,PF⊥BC于F;在Rt△AEB中,根據(jù)正切tanA的值可求得BE=8,AE=6,從而可得PF=BE=8,根據(jù)等腰直角三角形的性質(zhì)可得PF=BF=FQ=8,根據(jù)勾股定理可得PB=PQ=,根據(jù)扇形面積公式可得PB旋轉(zhuǎn)到PQ所掃過(guò)的面積;
②如圖,當(dāng)點(diǎn)Q落在CD上時(shí),作BE⊥AD于E,QF⊥AD交AD的延長(zhǎng)線于F;設(shè)PE=x,由全等三角形判定可得△PBE≌△QPF,再由正切函數(shù)定義列方程可求PE=4,在Rt△PEB中,根據(jù)勾股定理求得PB=4,根據(jù)扇形面積公式可得PB旋轉(zhuǎn)到PQ所掃過(guò)的面積;
③如圖,當(dāng)點(diǎn)Q落在AD上時(shí),易知PB=PQ=8,根據(jù)扇形面積公式可得PB旋轉(zhuǎn)到PQ所掃過(guò)的面積.
(1)解:如圖1中,
①當(dāng)點(diǎn)Q在平行四邊形ABCD內(nèi)時(shí),∠AP′B=180°∠Q′P′B∠Q′P′D=180°90°10°=80°
②當(dāng)點(diǎn)Q在平行四邊形ABCD外時(shí),∠APB=180°(∠QPB∠QPD)=180°(90°10°)=100°
綜上所述,當(dāng)∠DPQ=10°時(shí),∠APB的值為80°或100°
(2)如圖2中,連接BQ,作PE⊥AB于E.
∵tan∠ABP:tanA=3:2,tanA=,
∴tan∠ABP=2,在Rt△APE中,tanA=,
設(shè)PE=4k,則AE=3k,在Rt△PBE中,tan∠ABP==2,
∴EB=2k,
∴AB=5k=10,
∴k=2,
∴PE=8,EB=4,
∴PB=,
∵△BPQ是等腰直角三角形,
∴BQ=PB= .
(3)①如圖3中,當(dāng)點(diǎn)Q落在直線BC上時(shí),作BE⊥AD于E,PF⊥BC于F. 則四邊形BEPF是矩形。
在Rt△AEB中,∵tanA=,
∵AB=10,∴BE=8,AE=6,
∴PF=BE=8,
∵△BPQ是等腰直角三角形,PF⊥BQ,∴PF=BF=FQ=8,
∴PB=PQ=,
∴PB旋轉(zhuǎn)到PQ所掃過(guò)的面積=.
②如圖4中,當(dāng)點(diǎn)Q落在CD上時(shí),作BE⊥AD于E,QF⊥AD交AD的延長(zhǎng)線于F. 設(shè)PE=x.
易證△PBE≌△QPF,
∴PE=QF=x,EB=PF=8,∴DF=AE+PE+PFAD=x1,∵CD∥AB,∴∠FDQ=∠A,
∴tan∠FDQ=tanA=,
∴,
∴x=4,∴PE=4,
在Rt△PEB中,PB= ,
∴PB旋轉(zhuǎn)到PQ所掃過(guò)的面積=.
③如圖5中,
當(dāng)點(diǎn)Q落在AD上時(shí),易知PB=PQ=8,
∴PB旋轉(zhuǎn)到PQ所掃過(guò)的面積=,
綜上所述,PB旋轉(zhuǎn)到PQ所掃過(guò)的面積為32π或20π或16π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題再現(xiàn):
數(shù)形結(jié)合是解決數(shù)學(xué)問(wèn)題的一種重要的思想方法,借助這種方法可將抽象的數(shù)學(xué)知識(shí)變得直觀起來(lái)并且具有可操作性,從而可以幫助我們快速解題.初中數(shù)學(xué)里的一些代數(shù)公式,很多都可以通過(guò)表示幾何圖形面積的方法進(jìn)行直觀推導(dǎo)和解釋.例如:利用圖形的幾何意義推證完全平方公式.將一個(gè)邊長(zhǎng)為a的正方形的邊長(zhǎng)增加b,形成兩個(gè)矩形和兩個(gè)正方形,如圖1,這個(gè)圖形的面積可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2=a2+2ab+b2
這就驗(yàn)證了兩數(shù)和的完全平方公式.
問(wèn)題提出:
如何利用圖形幾何意義的方法推證:13+23=32 如圖2,A表示1個(gè)1×1的正方形,即:1×1×1=13,B表示1個(gè)2×2的正方形,C與D恰好可以拼成1個(gè)2×2的正方形,因此:B、C、D就可以表示2個(gè)2×2的正方形,即:2×2×2=23,而A、B、C、D恰好可以拼成一個(gè)(1+2)×(1+2)的大正方形,由此可得:13+23=(1+2)2=32
嘗試解決:
請(qǐng)你類比上述推導(dǎo)過(guò)程,利用圖形幾何意義方法推證:13+23+33= (要求自己構(gòu)造圖形并寫出推證過(guò)程)
類比歸納:
請(qǐng)用上面的表示幾何圖形面積的方法探究:13+23+33+…+n3= (要求直接寫出結(jié)論,不必寫出解題過(guò)程)
實(shí)際應(yīng)用:
圖3是由棱長(zhǎng)為1的小正方體搭成的大正方體,圖中大小正方體一共有多少個(gè)?為了正確數(shù)出大小正方體的總個(gè)數(shù),我們可以分類統(tǒng)計(jì),即分別數(shù)出棱長(zhǎng)是1,2,3和4的正方體的個(gè)數(shù),再求總和.
例如:棱長(zhǎng)是1的正方體有:4×4×4=43個(gè),棱長(zhǎng)是2的正方體有:3×3×3=33個(gè),棱長(zhǎng)是3的正方體有:2×2×2=23個(gè),棱長(zhǎng)是4的正方體有:1×1×l=13個(gè),然后利用(3)類比歸納的結(jié)論,可得: = 圖4是由棱長(zhǎng)為1的小正方體成的大正方體,圖中大小正方體一共有 個(gè).
逆向應(yīng)用:
如果由棱長(zhǎng)為1的小正方體搭成的大正方體中,通過(guò)上面的方式數(shù)出的大小正方體一共有44100個(gè),那么棱長(zhǎng)為1的小正方體一共有 個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P為某個(gè)封閉圖形邊界上的一定點(diǎn),動(dòng)點(diǎn)M從點(diǎn)P出發(fā),沿其邊界順時(shí)針勻速運(yùn)動(dòng)一周,設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為x,線段PM的長(zhǎng)度為y,表示y與x的函數(shù)圖象大致如圖所示,則該封閉圖形可能是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知BC是⊙O的直徑,點(diǎn)A,D在⊙O上,∠B=2∠CAD,在BC的延長(zhǎng)線上有一點(diǎn)P,使得∠P=∠ACB,弦AD交直徑BC于點(diǎn)E.
(1)求證:DP與⊙O相切;
(2)判斷△DCE的形狀,并證明你的結(jié)論;
(3)若CE=2,DE=,求線段BC的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 某校為了解九年級(jí)男同學(xué)的體育考試準(zhǔn)備情況,隨機(jī)抽取部分男同學(xué)進(jìn)行了1000米跑測(cè)試.按照成績(jī)分為優(yōu)秀、良好、合格與不合格四個(gè)等級(jí).學(xué)校繪制了如下不完整的統(tǒng)計(jì)圖.
(1)根據(jù)給出的信息,補(bǔ)全兩幅統(tǒng)計(jì)圖;
(2)該校九年級(jí)有600名男生,請(qǐng)估計(jì)成績(jī)未達(dá)到良好有多少名?
(3)某班甲、乙兩位成績(jī)優(yōu)秀的同學(xué)被選中參加即將舉行的學(xué)校運(yùn)動(dòng)會(huì)1000米比賽,預(yù)賽分為A、B、C三組進(jìn)行,選手由抽簽確定分組.甲、乙兩人恰好分在同一組的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,ABCD的邊AB=2,頂點(diǎn)A坐標(biāo)為(1,b),點(diǎn)D坐標(biāo)為(2,b+1)
(1)點(diǎn)B的坐標(biāo)是 ,點(diǎn)C的坐標(biāo)是 (用b表示);
(2)若雙曲線y=過(guò)ABCD的頂點(diǎn)B和D,求該雙曲線的表達(dá)式;
(3)若ABCD與雙曲線y=(x>0)總有公共點(diǎn),求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長(zhǎng)線交BA的延長(zhǎng)線于點(diǎn)G,CE的延長(zhǎng)線交DA的延長(zhǎng)線于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請(qǐng)說(shuō)明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請(qǐng)求出S與m的函數(shù)關(guān)系式;如果不變化,請(qǐng)求出定值.
②請(qǐng)直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,AC=3,AB=4,D為斜邊BC的中點(diǎn),E為AB上一個(gè)動(dòng)點(diǎn),將△ABC沿直線DE折疊,A,C的對(duì)應(yīng)點(diǎn)分別為,,交BC于點(diǎn)F,若△BEF為直角三角形,則BE的長(zhǎng)度為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com