【題目】在新修的花園小區(qū)中,有一條“Z”字形綠色長廊ABCD,如圖,AB∥CD,在AB、BC、CD三段綠色長廊上各修建一涼亭E、M、F,且BE=CF,M是BC的中點(diǎn),E、M、F在一條直線上.若在涼亭M與F之間有一池塘,在用皮尺不能直接測量的情況下,你能知道M與F之間的距離嗎?試說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,BD是一條對角線,點(diǎn)E在直線CD上(與點(diǎn)C,D不重合),連接AE,平移△ADE,使點(diǎn)D移動到點(diǎn)C,得到△BCF,過點(diǎn)F作FG⊥BD于點(diǎn)G,連接AG,EG.
(1)問題猜想:如圖1,若點(diǎn)E在線段CD上,試猜想AG與EG的數(shù)量關(guān)系是____________,位置關(guān)系是____________;
(2)類比探究:如圖2,若點(diǎn)E在線段CD的延長線上,其余條件不變,小明猜想(1)中的結(jié)論仍然成立,請你給出證明;
(3)解決問題:若點(diǎn)E在線段DC的延長線上,且∠AGF=120°,正方形ABCD的邊長為2,請在備用圖中畫出圖形,并直接寫出DE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對應(yīng)值如下表,
x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 12 | 5 | 0 | -3 | -4 | -3 | 0 | 5 | 12 | … |
下列四個結(jié)論:
(1)二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;
(2)拋物線與y軸交點(diǎn)為(0,-3);
(3)二次函數(shù)y=ax2+bx+c 的圖像對稱軸是x=1;
(4)本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結(jié)論的個數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了讓學(xué)生能更加了解溫州歷史,某校組織七年級師生共480人參觀溫州博物館.學(xué)校向租車公司租賃A、B兩種車型接送師生往返,若租用A型車3輛,B型車6輛,則空余15個座位;若租用A型車5輛,B型車4輛,則15人沒座位.
(1)求A、B兩種車型各有多少個座位;
(2)若A型車日租金為350元,B型車日租金為400元,且租車公司最多能提供7輛B型車,應(yīng)怎樣租車能使座位恰好坐滿且租金最少,并求出最少租金.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是對角線BD上的一點(diǎn),過點(diǎn)C作CF∥DB,且CF=DE,連接AE,BF,EF.
(1)求證:△ADE≌△BCF;
(2)若∠ABE+∠BFC=180°,則四邊形ABFE是什么特殊四邊形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE=AC,AB=AD,∠EAB=∠CAD.
(1)BC與DE相等嗎?說明理由.
(2)若BC與DE相交于點(diǎn)F,EF=CF.連接AF,∠BAF與∠DAF相等嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知一次函數(shù)=的圖象經(jīng)過點(diǎn)A(1,0),與反比例函數(shù)=(>0)的圖象相交于點(diǎn)B(m,1).
(1)求m的值和一次函數(shù)的解析式;
(2)結(jié)合圖象直接寫出:當(dāng)>0時,不等式>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于M,AE⊥BD于E,交CD于N,連AC
(1)求證:AC=AN;
(2)若OM∶OC=3∶5,AB=5,求⊙O的半徑;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解
如圖 a,在△ABC 中,D 是 BC 的中點(diǎn).如果用 SABC 表示△ABC 的面積,則由等底等高的三角形的面積相等,可得.同理,如圖 b,在 ABC 中,D、E 是 BC 的三等分點(diǎn),可得
結(jié)論應(yīng)用
已知△ABC 的面積為 42,請利用上面的結(jié)論解決下列問題:
(1)如圖 1,若 D、E 分別是 AB、AC 的中點(diǎn),CD 與 BE交于點(diǎn) F,則△DBF 的面積為 ;
類比推廣
(2)如圖 2,若 D、E 是 AB 的三等分點(diǎn),F、G 是 AC 的 三等分點(diǎn),CD 分別交 BF、BG 于 M、N,CE 分別交 BF、BG 于 P、Q,求△BEP 的面積;
(3)如圖2,問題(2)中的條件不變,求四邊形EPMD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com