【題目】本學(xué)期開學(xué)前夕,某文具店用4000元購進若干書包,很快售完,接著又用4500元購進第二批書包,已知第二批所購進書包的只數(shù)是第一批所購進書包的只數(shù)的1.5倍,且每只書包的進價比第一批的進價少5元,求第一批書包每只的進價是多少?

【答案】第一批書包每只的進價是20元.

【解析】設(shè)第一批書包每只是x元,則第一批進的數(shù)量是: ,第二批進的數(shù)量是: ,再根據(jù)等量關(guān)系:第二批進的數(shù)量=第一批進的數(shù)量×1.5可得方程.

解:設(shè)第一批書包每只是x元,

依題意得: ×1.5=,

解得x=20.

經(jīng)檢驗x=20是原方程的解,且符合題意.

答:第一批書包每只的進價是20元.

“點睛”本題考查了分式方程的應(yīng)用,解題關(guān)鍵是根據(jù)等量關(guān)系:第二批進的數(shù)量=第一批進的數(shù)量×1.5列出方程

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2+ax+a﹣2=0.
(1)若該方程的一個根為2,求a的值及該方程的另一根.
(2)求證:不論a取何實數(shù),該方程都有兩個不相等的實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市文化宮學(xué)習(xí)十九大有關(guān)優(yōu)先發(fā)展教育的精神,舉辦了為某貧困山區(qū)小學(xué)捐贈書包活動首次用2000元在商店購進一批學(xué)生書包,活動進行后發(fā)現(xiàn)書包數(shù)量不夠,又購進第二批同樣的書包,所購數(shù)量是第一批數(shù)量的3倍,但單價貴了4元,結(jié)果第二批用了6300元.

(1)求文化官第一批購進書包的單價是多少?

(2)商店兩批書包每個的進價分別是68元和70元,這兩批書包全部售給文化宮后,商店共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點,以O(shè)為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過點C,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線Ly=x+2x軸、y軸分別交于A、B兩點,在y軸上有一點N04),動點MA點以每秒1個單位的速度勻速沿x軸向左移動.

1)點A的坐標:_____;點B的坐標:_____;

2)求NOM的面積SM的移動時間t之間的函數(shù)關(guān)系式;

3)在y軸右邊,當(dāng)t為何值時,NOMAOB,求出此時點M的坐標;

4)在(3)的條件下,若點G是線段ON上一點,連結(jié)MGMGN沿MG折疊,點N恰好落在x軸上的點H處,求點G的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標系,拋物線可以用y=﹣ x2+bx+c表示,且拋物線的點C到墻面OB的水平距離為3m時,到地面OA的距離為 m.
(1)求該拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形BCDE的各邊分別平行于x軸或y軸,物體甲和物體乙分別由點A(2,0)同時出發(fā),沿矩形BCDE的邊作環(huán)繞運動,物體甲按逆時針方向以1個單位/秒勻速運動,物體乙按順時針方向以2個單位/秒勻速運動,則兩個物體運動后的第2012次相遇地點的坐標是【 】

A.(2,0) B.(1,1) C.(2,1) D.(1,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是半徑為2的⊙O的內(nèi)接三角形,連接OA、OB,點D、E、F、G分別是CA、OA、OB、CB的中點.
(1)試判斷四邊形DEFG的形狀,并說明理由;
(2)填空: ①若AB=3,當(dāng)CA=CB時,四邊形DEFG的面積是;
②若AB=2,當(dāng)∠CAB的度數(shù)為時,四邊形DEFG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下列各題:(用簡便方法計算)

(1)-102n×100×(-10)2n-1; (2)[(-a)(-b)2a2b3c]2

(3)(x32÷x2÷x+x3÷(-x)2(-x2); (4)(-9)3×( -)3

查看答案和解析>>

同步練習(xí)冊答案