【題目】如圖,網(wǎng)格中每個(gè)小正方形邊長(zhǎng)為1ABC的頂點(diǎn)都在格點(diǎn)上.將ABC向左平移2格,再向上平移3格,得到ABC

1)請(qǐng)?jiān)趫D中畫出平移后的ABC;

2)畫出平移后的ABC的中線BD

3)若連接BB,CC,則這兩條線段的關(guān)系是________

(4)ABC在整個(gè)平移過(guò)程中線段AB 掃過(guò)的面積為________

(5)若ABCABE面積相等,則圖中滿足條件且異于點(diǎn)C的格點(diǎn)E共有______個(gè)

(注:格點(diǎn)指網(wǎng)格線的交點(diǎn))

【答案】(1)畫圖見(jiàn)解析;(2)畫圖見(jiàn)解析;(3)平行且相等;(4)12;(5)9

【解析】試題分析:(1)利用網(wǎng)格特點(diǎn)和平移的性質(zhì)分別畫出點(diǎn)AB、C的對(duì)應(yīng)點(diǎn)A′、B′、C′即可得到A′B′C′;

2)找出線段A′C′的中點(diǎn)E′,連接B′E′;

3)根據(jù)平移的性質(zhì)求解;

(4)由于線段AB掃過(guò)的部分為平行四邊形,則根據(jù)平行四邊形的面積公式可求解.

(5)根據(jù)同底等高面積相等可知共有9個(gè)點(diǎn).

試題解析:

1ABC如圖所示;

2BD如圖所示;

3BB′CC′,BB′=CC′

(4)線段AB掃過(guò)的面積=4×3=12;

(5)9個(gè)點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)據(jù):80,88,85,85,83,83,84.下列說(shuō)法中錯(cuò)誤的有( )

A、這組數(shù)據(jù)的平均數(shù)是84;

B、這組數(shù)據(jù)的眾數(shù)是85;

C、這組數(shù)據(jù)的中位數(shù)是84;

D、這組數(shù)據(jù)的方差是36.

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】C=,EAC+FBC=

(1)如圖,AM是EAC的平分線,BN是FBC的平分線,若AMBN,則有何關(guān)系?并說(shuō)明理由

(2)如圖,若EAC的平分線所在直線與FBC平分線所在直線交于P,試探究APB與的關(guān)系是 (用、表示)

(3)如圖,若,EAC與FBC的平分線相交于;依此類推,則= (表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)城總長(zhǎng)約為6 700 000米,用科學(xué)記數(shù)法表示正確的是( 。

A. 6.7×108 B. 6.7×107 C. 6.7×106 D. 6.7×105

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1O的半徑為rr0),若點(diǎn)P′在射線OP上,滿足OP′OP=r2,則稱點(diǎn)P′是點(diǎn)P關(guān)于O反演點(diǎn)

如圖2,O的半徑為4,點(diǎn)BO上,BOA=60°OA=8,若點(diǎn)A′,B′分別是點(diǎn)A,B關(guān)于O的反演點(diǎn),求A′B′的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一次函數(shù)y2x3的圖象沿y軸向上平移8個(gè)單位長(zhǎng)度,所得直線的解析式為(

A. y2x5 B. y2x5 C. y2x8 D. y2x8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分6分)如圖,已知ABDCAE平分∠BAD,CDAE相交于點(diǎn)F,∠CFE=∠E.試說(shuō)明ADBC.完成推理過(guò)程:

ABDC(已知)

∴∠1=∠CFE   

AE平分∠BAD(已知)

∴∠1= ∠2 (角平分線的定義)

∵∠CFE=∠E(已知)∴∠2=   (等量代換)

ADBC   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫弧交AD于點(diǎn)E,如果點(diǎn)F是弧EC的中點(diǎn),聯(lián)結(jié)FB,那么tanFBC的值為

考點(diǎn):全等三角形的判定與性質(zhì);角平分線的性質(zhì);矩形的性質(zhì);圓心角、弧、弦的關(guān)系;解直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 “節(jié)約用水、人人有責(zé)”,某班學(xué)生利用課余時(shí)間對(duì)金輝小區(qū)300戶居民的用水情況進(jìn)行了統(tǒng)計(jì),發(fā)現(xiàn)5月份各戶居民的用水量比4月份有所下降,并且將5月份各戶居民的節(jié)水量統(tǒng)計(jì)整理成如圖所示的統(tǒng)計(jì)圖表

節(jié)水量/立方米

1

1.5

2.5

3

戶數(shù)/戶

50

80

a

70

(1)寫出統(tǒng)計(jì)表中a的值和扇形統(tǒng)計(jì)圖中2.5立方米對(duì)應(yīng)扇形的圓心角度數(shù).

(2)根據(jù)題意,將5月份各居民的節(jié)水量的條形統(tǒng)計(jì)圖補(bǔ)充完整.

(3)求該小區(qū)300戶居民5月份平均每戶節(jié)約用水量,若用每立方米水需4元水費(fèi),請(qǐng)你估算每戶居民1年可節(jié)約多少元錢的水費(fèi)?

查看答案和解析>>

同步練習(xí)冊(cè)答案