【題目】如圖,在等邊三角形ABC的三邊上,分別取點(diǎn)D,E,F,
使得△DEF為等邊三角形,求證:AD=BE=CF.
【答案】證明見解析.
【解析】試題分析:
由△ABC和△DEF都是等邊三角形,易得∠A=∠B=∠EDF=60°,這樣可得∠AFD+∠ADF=120°,∠ADF+∠BDE=120°,從而可得∠AFD=∠BDE,結(jié)合DF=ED,可證得△ADF≌△BED,從而可得AD=BE,同理可證BE=CF,就可得到結(jié)論.
試題解析:
∵△ABC和△DEF都是等邊三角形,
∴∠A=∠B=∠EDF=60°,DE=FD,
∴∠AFD+∠ADF=120°,∠ADF+∠BDE=120°,
∴∠AFD=∠BDE,
在△AFD和△BDE中, ,
∴△AFD≌△BDE,
∴AD=BE.
同理可證BE=CF,
∴AD=BE=CF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A、E重合),在AE同側(cè)分別作正△ABC和正△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.
恒成立的結(jié)論有 .(把你認(rèn)為正確的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
①13+(﹣56)+47+(﹣34)
②( ﹣ ﹣ )×(﹣24)
③(﹣1)10×2+(﹣2)3÷4
④﹣22+|5﹣8|+24÷(﹣3)× .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形兩邊長分別為3和6,第三邊的長是方程x2-13x+36=0的兩根,則該三角形的周長為( )
A.13
B.15
C.18
D.13或18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.點(diǎn)F是點(diǎn)E關(guān)于AB的對(duì)稱點(diǎn),連接AF、BF.
(1)求AE和BE的長;
(2)若將△ABF沿著射線BD方向平移,設(shè)平移的距離為m(平移距離指點(diǎn)B沿BD方向所經(jīng)過的線段長度).當(dāng)點(diǎn)F分別平移到線段AB、AD上時(shí),直接寫出相應(yīng)的m的值;
(3)如圖②,將△ABF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<180°),記旋轉(zhuǎn)中的△ABF為△A′BF′,在旋轉(zhuǎn)過程中,設(shè)A′F′所在的直線與直線AD交于點(diǎn)P.與直線BD交于點(diǎn)Q.是否存在這樣的P、Q兩點(diǎn),使△DPQ為等腰三角形?若存在,求出此時(shí)DQ的長;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)概率的課堂上,老師提出問題:只有一張電影票,小明和小剛想通過抽取撲克牌的游戲來決定誰去看電影,請(qǐng)你設(shè)計(jì)一個(gè)對(duì)小明和小剛都公平的方案.
甲同學(xué)的方案:將紅桃2、3、4、5四張牌背面向上,小明先抽一張,小剛從剩下的三張牌中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小明看電影,否則小剛看電影.
(1)甲同學(xué)的方案公平嗎?請(qǐng)用列表或畫樹狀圖的方法說明;
(2)乙同學(xué)將甲的方案修改為只用紅桃2、3、4三張牌,抽取方式及規(guī)則不變,乙的方案公平嗎?(只回答,不說明理由)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com