【題目】如圖,在邊長為4的正方形ABCD中,E、F是AD邊上的兩個動點,且AE=FD,連接BE、CF、BD,CF與BD交于點G,連接AG交BE于點H,連接DH,下列結(jié)論正確的個數(shù)是( )
①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④SHDG:SHBG=tan∠DAG ⑤線段DH的最小值是2 ﹣2.

A.2
B.3
C.4
D.5

【答案】C
【解析】∵四邊形ABCD是正方形,

∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,

在△ABE和△DCF中,

∴△ABE≌△DCF(SAS),

∴∠ABE=∠DCF,

在△ADG和△CDG中,

,

∴△ADG≌△CDG(SAS),

∴∠DAG=∠DCF,

∴∠ABE=∠DAG,

∵∠DAG+∠BAH=90°,

∴∠BAE+∠BAH=90°,

∴∠AHB=90°,

∴AG⊥BE,故③正確,

同法可證:△AGB≌△CGB,

∵DF∥CB,

∴△CBG∽△FDG,

∴△ABG∽△FDG,故①正確,

∵SHDG:SHBG=DG:BG=DF:BC=DF:CD=tan∠FCD,

又∵∠DAG=∠FCD,

∴SHDG:SHBG=tan∠FCD=tan∠DAG,故④正確

取AB的中點O,連接OD、OH,

∵正方形的邊長為4,

∴AO=OH= ×4=2,

由勾股定理得,OD= =2

由三角形的三邊關系得,O、D、H三點共線時,DH最小,

DH最小=2 ﹣2.

無法證明DH平分∠EHG,故②錯誤,

故①③④⑤正確,

所以答案是:C.

【考點精析】關于本題考查的正方形的性質(zhì)和相似三角形的判定與性質(zhì),需要了解正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將正方形對折后展開(圖④是連續(xù)兩次對折后再展開),再按圖示方法折疊,能夠得到一個直角三角形(陰影部分),且它的一條直角邊等于斜邊的一半,這樣的圖形有( ).

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,延長CB至點F,使CF=CA,連接AF,∠ACF的平分線分別交AF,AB,BD于點E,N,M,連接EO.

(1)已知BD= ,求正方形ABCD的邊長;
(2)猜想線段EM與CN的數(shù)量關系并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家之一.為了增強居民的節(jié)水意識,某市自來水公司對居民用水采用以戶為單位分段計費辦法收費.即一個月用水10 t以內(nèi)(包括10 t)的用戶,每噸收水費a元;一個月用水超過10 t的用戶,10 t水仍按每噸a元收費,超過10 t的部分,按每噸b(b>a)元收費.設一戶居民月用水x t,應交水費y元,y與x之間的函數(shù)關系如圖所示.

(1)求a的值;某戶居民上月用水8 t,應交水費多少元?

(2)求b的值,并寫出當x>10時,y與x之間的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等邊ABC中,在射線BA上有一點D,連接CD,并以CD為邊向上作等邊CDE,連接BEAE.試判斷下列結(jié)論:①AE=BD; AEAB所夾銳夾角為60°;③當D在線段ABBA延長線上時,總有∠BDE-AED=2BDC;④∠BCD=90°時,CE2+AD2=AC2+DE2 .正確的序號有(

A. ①② B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】是某汽車行駛的路程S(km)與時間t(min)的函數(shù)關系圖.觀察圖中所提供的信息,解答下列問題:

1)汽車在前9分鐘內(nèi)的平均速度是多少?

2)汽車在中途停了多長時間?

316≤t≤30時,求St的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知有理數(shù)a,bc在數(shù)軸上對應的點分別為A,B,C,且滿足(a-12+|ab+3|=0,c=-2a+b

1)分別求ab,c的值;

2)若點A和點B分別以每秒2個單位長度和每秒1個單位長度的速度在數(shù)軸上同時相向運動,設運動時間為t秒.

i)是否存在一個常數(shù)k,使得3BC-kAB的值在一定時間范圍內(nèi)不隨運動時間t的改變而改變?若存在,求出k的值;若不存在,請說明理由.

ii)若點C以每秒3個單位長度的速度向右與點A,B同時運動,何時點C為線段AB的三等分點?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義新運算:對于任意實數(shù)a,b,都有ab=a(a-b)+1,等式右邊是通常的加法、減法及乘法運算,比如: 25=2(2-5)+1=2(-3)+1=-6+1=-5.

(1)求(-2)3的值

(2)若3x的值小于13,求x的取值范圍,并在圖示的數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知∠AOB90°,∠BOC20°,OM平分∠AOC,ON平分∠BOC;

1)求∠MON;

2)∠AOB=α,∠BOC=β,求∠MON的度數(shù).

查看答案和解析>>

同步練習冊答案