【題目】(類比概念)三角形的內(nèi)切圓是以三個(gè)內(nèi)角的平分線的交點(diǎn)為圓心,以這點(diǎn)到三邊的距離為半徑的圓,則三角形可以稱為圓的外切三角形,可以得出三角形的三邊與該圓相切.以此類推,如圖1,各邊都和圓相切的四邊形稱為圓外切四邊形
(性質(zhì)探究)如圖1,試探究圓外切四邊形的ABCD兩組對(duì)邊AB,CD與BC,AD之間的數(shù)量關(guān)系
猜想結(jié)論: (要求用文字語(yǔ)言敘述)
寫出證明過(guò)程(利用圖1,寫出已知、求證、證明)
(性質(zhì)應(yīng)用)
①初中學(xué)過(guò)的下列四邊形中哪些是圓外切四邊形 (填序號(hào))
A:平行四邊形:B:菱形:C:矩形;D:正方形
②如圖2,圓外切四邊形ABCD,且AB=12,CD=8,則四邊形的周長(zhǎng)是 .
③圓外切四邊形的周長(zhǎng)為48cm,相鄰的三條邊的比為5:4:7,求四邊形各邊的長(zhǎng).
【答案】見(jiàn)解析.
【解析】
(1)根據(jù)切線長(zhǎng)定理即可得出結(jié)論;
(2)①圓外切四邊形是內(nèi)心到四邊的距離相等,即可得出結(jié)論;
②根據(jù)圓外切四邊形的對(duì)邊和相等,即可求出結(jié)論;
③根據(jù)圓外切四邊形的性質(zhì)求出第四邊,利用周長(zhǎng)建立方程求解即可得出結(jié)論.
性質(zhì)探討:圓外切四邊形的對(duì)邊和相等,理由:
如圖1,已知:四邊形ABCD的四邊AB,BC,CD,DA都于⊙O相切于G,F,E,H.
求證:AD+BC=AB+CD.
證明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圓外切四邊形的對(duì)邊和相等.
故答案為:圓外切四邊形的對(duì)邊和相等;
性質(zhì)應(yīng)用:①∵根據(jù)圓外切四邊形的定義得:圓心到四邊的距離相等.
∵平行四邊形和矩形不存在一點(diǎn)到四邊的距離相等,而菱形和正方形對(duì)角線的交點(diǎn)到四邊的距離相等.
故答案為:B,D;
②∵圓外切四邊形ABCD,∴AB+CD=AD+BC.
∵AB=12,CD=8,∴AD+BC=12+8=20,∴四邊形的周長(zhǎng)是AB+CD+AD+BC=20+20=40.
故答案為:40;
③∵相鄰的三條邊的比為5:4:7,∴設(shè)此三邊為5x,4x,7x,根據(jù)圓外切四邊形的性質(zhì)得:第四邊為5x+7x﹣4x=8x.
∵圓外切四邊形的周長(zhǎng)為48cm,∴4x+5x+7x+8x=24x=48,∴x=2,∴此四邊形的四邊為4x=8cm,5x=10cm,7x=14cm,8x=16cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(3,2),B(4,3),C(1,1).
(1)在圖中作出△ABC關(guān)于y軸對(duì)稱的△;
(2)寫出點(diǎn)△,,的坐標(biāo)(直接寫答案): ___;___;___;
(3)△的面積為___;
(4)在y軸上畫出點(diǎn)P,使PB+PC最小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分10分)如圖①,一條筆直的公路上有A、B、C三地,B.C兩地相距150千米,甲、乙兩輛汽車分別從B、C兩地同時(shí)出發(fā),沿公路勻速相向而行,分別駛往C、B兩地.甲、乙兩車到A地的距離y1、y2(千米)與行駛時(shí)間x(時(shí))的關(guān)系如圖②所示.根據(jù)圖像進(jìn)行以下探究:
(1)請(qǐng)?jiān)趫D①中標(biāo)出A地的位置,并作簡(jiǎn)要的文字說(shuō)明;
(2)求圖②中M點(diǎn)的坐標(biāo),并解釋該點(diǎn)的實(shí)際意義;
(3)在圖②中補(bǔ)全甲車的函數(shù)圖像,求甲車到A地的距離y1與行駛時(shí)間x的函數(shù)表達(dá)式;
(4)A地設(shè)有指揮中心,指揮中心及兩車都配有對(duì)講機(jī),兩部對(duì)講機(jī)在15千米之內(nèi)(含15千米)時(shí)能夠互相通話,求兩車可以同時(shí)與指揮中心用對(duì)講機(jī)通話的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-3,3),以A為頂點(diǎn)的∠BAC的兩邊始終與x軸交于B、C兩點(diǎn)(B在C左面),且∠BAC=45°.過(guò)點(diǎn)A作AD⊥x軸,垂足為D,當(dāng)DC=1時(shí),將∠BAC沿AC所在直線翻折,翻折后邊AB交y軸于點(diǎn)M,則點(diǎn)M的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=kx+b與直線y=2x平行,且經(jīng)過(guò)點(diǎn)A(4,4).
(1)求k和b的值;
(2)若直線y=kx+b與y軸相交于點(diǎn)B,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與x軸的交點(diǎn)坐標(biāo)分別為A(1,0),B(x2,0)(點(diǎn)B在點(diǎn)A的右側(cè)),其對(duì)稱軸是x=3,該函數(shù)有最小值是﹣2.
(1)求二次函數(shù)解析式;
(2)在圖1上作平行于x軸的直線,交拋物線于C(x3,y3),D(x4,y4),求x3+x4的值;
(3)將(1)中函數(shù)的部分圖象(x>x2)向下翻折與原圖象未翻折的部分組成圖象“G”,如圖2,在(2)中平行于x軸的直線取點(diǎn)E(x5,y5)、(x4<x5),結(jié)合函數(shù)圖象求x3+x4+x5的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,AD=6,點(diǎn)P是邊BC上的動(dòng)點(diǎn),現(xiàn)將紙片折疊,使點(diǎn)A與點(diǎn)P重合,折痕與矩形邊的交點(diǎn)分別為E、F,要使折痕始終與邊AB、AD有交點(diǎn),則BP的取值范圍是_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A,點(diǎn)E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ,以下四個(gè)結(jié)論,①AD=BE;②CP=CQ;③OB=DE;④PQ∥AE,一定成立的結(jié)論有_____(請(qǐng)把正確結(jié)論的序號(hào)填在橫線上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC=80°,若MP和NQ分別垂直平分AB和AC.
(1)求∠PAQ的度數(shù).
(2)若△APQ周長(zhǎng)為12,BC長(zhǎng)為8,求PQ的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com