【題目】如圖,矩形紙片ABCD中,AB=4,AD=6,點(diǎn)P是邊BC上的動(dòng)點(diǎn),現(xiàn)將紙片折疊,使點(diǎn)A與點(diǎn)P重合,折痕與矩形邊的交點(diǎn)分別為E、F,要使折痕始終與邊AB、AD有交點(diǎn),則BP的取值范圍是_________________.
【答案】6-2≤x≤4.
【解析】試題分析:此題需要運(yùn)用極端原理求解:①BP最小時(shí),F、D重合,由折疊的性質(zhì)知:AF=PF,在Rt△PFC中,利用勾股定理可求得PC的長,進(jìn)而可求得BP的值,即BP的最小值;②BP最大時(shí),E、B重合,根據(jù)折疊的性質(zhì)即可得到AB=BP=34,即BP的最大值為4;根據(jù)上述兩種情況即可得到BP的取值范圍.
試題解析:如圖:
①當(dāng)F、D重合時(shí),BP的值最;
根據(jù)折疊的性質(zhì)知:AF=PF=6;
在Rt△PFC中,PF=6,FC=4,則PC=2;
∴BP=xmin=6-2;
②當(dāng)E、B重合時(shí),BP的值最大;根據(jù)折疊的性質(zhì)即可得到AB=BP=4,即BP的最大值為4;
故答案為:6-2≤x≤4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛汽車沿同一路線從A地前往B地,甲以千米/時(shí)的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以千米/時(shí)的速度繼續(xù)行駛;乙在甲出發(fā)2小時(shí)后勻速前往B地,比甲早30分鐘到達(dá).到達(dá)B地后,乙按原速度返回A地,甲以千米/時(shí)的速度返回A地.設(shè)甲、乙兩車與A地相距s(千米),甲車離開A地的時(shí)間為t(時(shí)),s與t之間的函數(shù)圖象如圖所示.
(1)求的值.
(2)求甲車維修所用時(shí)間.
(3)求兩車在途中第二次相遇時(shí)t的值.
(4)請(qǐng)直接寫出當(dāng)兩車相距40千米時(shí),t的值或取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)P是∠MAN的角平分線上一點(diǎn),PB⊥AM于B,PC⊥AN于C.
(1)如圖1,點(diǎn)D、E分別在線段AB、AC上,且∠DPE=∠BPC,求證:DE=BD+CE;
(2)如圖2,若D在AB的延長線上,E在直線AC上,則DE、BD、CE三者的數(shù)量關(guān)系變化嗎?若變化,請(qǐng)直接寫出結(jié)論即可。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一項(xiàng)工程,甲、乙兩公司合做,12天可以完成,共需付工費(fèi)102000元;如果甲、乙兩公司單獨(dú)完成此項(xiàng)公程,乙公司所用時(shí)間是甲公司的1.5倍,乙公司每天的施工費(fèi)比甲公司每天的施工費(fèi)少1500元。
(1)甲、乙公司單獨(dú)完成此項(xiàng)工程,各需多少天?
(2)若讓一個(gè)公司單獨(dú)完成這項(xiàng)工程,哪個(gè)公司施工費(fèi)較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國倡導(dǎo)的“一帶一路”是中國與世界的互利共贏之路,據(jù)統(tǒng)計(jì),“一帶一路”地區(qū)覆蓋的總?cè)丝诩s為44億人,則“44億”這個(gè)數(shù)用科學(xué)記數(shù)法可表示為( 。
A.4.4×107B.4.4×108C.4.4×109D.0.44×1010
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】籃球比賽規(guī)定:勝一場得3分,負(fù)一場得1分.某籃球隊(duì)進(jìn)行了6場比賽,得了14分,該隊(duì)獲勝的場數(shù)是( )
A.2B.3C.4D.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com