精英家教網 > 初中數學 > 題目詳情

【題目】已知:如圖,拋物線y=x2+bx+cx軸交于A(-10)、B兩點(AB左),y軸交于點C0,-3).

1)求拋物線的解析式;

2)若點D是線段BC下方拋物線上的動點,求四邊形ABCD面積的最大值;

3)若點Ex軸上,點P在拋物線上.是否存在以BC、E、P為頂點且以BC為一邊的平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.

【答案】1;(2;(3P13,-3),P23),P3,3.

【解析】試題分析:1)將的坐標代入拋物線中,求出待定系數的值,即可得出拋物線的解析式.
2)根據的坐標,易求得直線的解析式.由于都是定值,則 的面積不變,若四邊形面積最大,則的面積最大;過點軸交,則 可得到當面積有最大值時,四邊形的面積最大值.

3)本題應分情況討論:①過軸的平行線,與拋物線的交點符合點的要求,此時的縱坐標相同,代入拋物線的解析式中即可求出點坐標;②將平移,令點落在軸(即點)、點落在拋物線(即點)上;可根據平行四邊形的性質,得出點縱坐標(縱坐標的絕對值相等),代入拋物線的解析式中即可求得點坐標.

試題解析:(1)把代入,

可以求得

2過點軸分別交線段軸于點

中,令,得

設直線的解析式為

可求得直線的解析式為:

S四邊形ABCD

時, 有最大值

此時四邊形ABCD面積有最大值

3)如圖所示,

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】三角形ABC的三邊長分別為6 cm、7.5 cm、9 cm,三角形DEF的一邊長為4 cm.當三角形DEF的另兩邊長是下列哪一組時,這兩個三角形相似( )

A. 2 cm、3 cm B. 4 cm5 cm C. 5 cm、6 cm D. 6 cm、7 cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD中,對角線AC和BD相交于點O,如果AC=12、BD=10、AB=m,那么m的取值范圍是( 。

A. 1<m<11 B. 2<m<22 C. 10<m<12 D. 5<m<6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A2,1),B(﹣11),C(﹣1,﹣3),D2,﹣3),點P從點A出發(fā),以每秒1個單位長度的速度沿ABCDA…的規(guī)律在圖邊形ABCD的邊上循環(huán)運動,則第2019秒時點P的坐標為( 。

A. 1,1B. 0,1C. (﹣1,1D. 2,﹣1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2018年我市的臍橙喜獲豐收,臍橙一上市,水果店的陳老板用2400元購進一批臍橙,很快售完;陳老板又用6000元購進第二批臍橙,所購件數是第一批的2倍,但進價比第一批每件多了20元.

1)第一批臍橙每件進價多少元?

2)陳老板以每件120元的價格銷售第二批臍橙,售出60%后,為了盡快售完,決定打折促銷,要使第二批臍橙的銷售總利潤不少于480元,剩余的臍橙每件售價最低打幾折?(利潤=售價﹣進價)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知∠AOB,作圖.

步驟1:在OB上任取一點M,以點M為圓心,MO長為半徑畫半圓,分別交OA、OB于點P、Q;

步驟2:過點MPQ的垂線交弧PQ 于點C;

步驟3:畫射線OC

則下列判斷:①弧CQ=弧PC;②MCOA;③OP=PQ;④OC平分∠AOB,

其中正確的為_______________(填序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題提出:將一個邊長為nn≥2)的正三角形的三條邊n等分,連接各邊對應的等分點, 則該三角形被剖分的網格中的結點個數和線段數分別是多少呢?

問題探究:要研究上面的問題,我們不妨先從特例入手,進而找到一般規(guī)律

探究一:將一個邊長為2的正三角形的三條邊平分,連接各邊中點,則該三角形被剖分的網格中的結點個數和線段數分別是多少?

如圖1,連接邊長為2的正三角形三條邊的中點,從上往下:共有1+2+3=6個結點.邊長為1的正三角形,第一層有1個,第二層有2個,共有1+2=3個,線段數為3×3=9條;邊長為2的正三角形有1個,線段數為3條,總共有1+2+1=2×1+2+3=12條線段.

探究二:將一個邊長為3的正三角形的三條邊三等分,連接各邊對應的等分點,則該三角形被剖分的網格中的結點個數和線段數分別是多少?

如圖2,連接邊長為3的正三角形三條邊的對應三等分點,從上往下:共有1+2+3+4=10個結點.邊長為1的正三角形,第一層有1個,第二層有2個,第三層有3個,共有1+2+3=6個,線段數為3×6=18條;邊長為2的正三角形有1+2=3個,線段數為3×3=9條,邊長為3的正三角形有1個,線段數為3條,總共有1+2+3+1+2+1=3×1+2+3+4=30條線段.

探究三:

請你仿照上面的方法,探究將邊長為4的正三角形的三條邊四等分(圖3),連接各邊對應的等分點,該三角形被剖分的網格中的結點個數和線段數分別是多少?

(畫出示意圖,并寫出探究過程)

問題解決:

請你仿照上面的方法,探究將一個邊長為nn≥2)的正三角形的三條邊n等分,連接各邊對應的等分點,則該三角形被剖分的網格中的結點個數和線段數分別是多少?(寫出探究過程)

實際應用:

將一個邊長為30的正三角形的三條邊三十等分,連接各邊對應的等分點,則該三角形被剖分的網格中的結點個數和線段數分別是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD的周長為20,對角線AC長為,點E、F分別為AC、BC邊上的動點.

1)直接寫出菱形ABCD的面積:_______

2)直接寫出BE+EF的最小值_______;并在圖中作出此時的點E和點F

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,函數y=kx+bk≠0)的圖象經過點B2,0),與函數y=2x的圖象交于點A,則不等式0kx+b2x的解集為( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案