【題目】如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)交點(diǎn)B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:
①2a+b=0;
②abc>0;
③方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;
④拋物線與x軸的另一個(gè)交點(diǎn)是(﹣1,0);
⑤當(dāng)1<x<4時(shí),有y2<y1 ,
其中正確的是( )
A.①②③
B.①③④
C.①③⑤
D.②④⑤
【答案】C
【解析】∵拋物線的頂點(diǎn)坐標(biāo)A(1,3),
∴拋物線的對(duì)稱(chēng)軸為直線x=﹣ =1,
∴2a+b=0,所以①正確;
∵拋物線開(kāi)口向下,
∴a<0,
∴b=﹣2a>0,
∵拋物線與y軸的交點(diǎn)在x軸上方,
∴c>0,
∴abc<0,所以②錯(cuò)誤;
∵拋物線的頂點(diǎn)坐標(biāo)A(1,3),
∴x=1時(shí),二次函數(shù)有最大值,
∴方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根,所以③正確;
∵拋物線與x軸的一個(gè)交點(diǎn)為(4,0)
而拋物線的對(duì)稱(chēng)軸為直線x=1,
∴拋物線與x軸的另一個(gè)交點(diǎn)為(﹣2,0),所以④錯(cuò)誤;
∵拋物線y1=ax2+bx+c與直線y2=mx+n(m≠0)交于A(1,3),B點(diǎn)(4,0)
∴當(dāng)1<x<4時(shí),y2<y1,所以⑤正確.
所以答案是:C.
【考點(diǎn)精析】本題主要考查了二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系和拋物線與坐標(biāo)軸的交點(diǎn)的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線開(kāi)口向上; a<0時(shí),拋物線開(kāi)口向下b與對(duì)稱(chēng)軸有關(guān):對(duì)稱(chēng)軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c);一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】看圖填空:已知如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠3, 求證:AD平分∠BAC.
證明:∵AD⊥BC于D,EG⊥BC于G( 已知 )
∴∠ADC=90°,∠EGC=90°( )
∴∠ADC=∠EGC(等量代換)
∴AD∥EG( )
∴∠1=∠3( )
∠2=∠E( )
又∵∠E=∠3( 已知) ∴∠1=∠2( )
∴AD平分∠BAC( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知 CD⊥AB,EF⊥AB,垂足分別為D,F,∠B+∠BDG=180°, 試說(shuō)明∠BEF=∠CDG.將下面的解答過(guò)程補(bǔ)充完整,并填空(填寫(xiě)理由依據(jù)或數(shù)學(xué)式, 將答案按序號(hào)填在答題卷的對(duì)應(yīng)位置內(nèi))
證明:∵CD⊥AB,EF⊥AB( ① )
∴∠BFE=∠BDC=90°( ② )
∴EF∥CD( ③ )
∴∠BEF= ④ ( ⑤ )
又∵∠B+∠BDG=180°( ⑥ )
∴BC∥DG( ⑦ )
∴∠CDG= ⑧ ( ⑨ )
∴∠CDG=∠BEF( ⑩ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀探究:12=,12+22=,12+22+32=,…
(1)根據(jù)上述規(guī)律,求12+22+32+42+52的值;
(2)你能用一個(gè)含有n(n為正整數(shù))的算式表示這個(gè)規(guī)律嗎?請(qǐng)直接寫(xiě)出這個(gè)算式(不計(jì)算);
(3)根據(jù)你發(fā)現(xiàn)的規(guī)律,計(jì)算下面算式的值:62+72+82+92+102+112+122+132+142+152.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E,F(xiàn),則線段B′F的長(zhǎng)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以△ABC的三邊為邊分別作等邊△ACD、△ABE、△BCF,則下列結(jié)論::①△EBF≌△DFC;②四邊形AEFD為平行四邊形;③當(dāng)AB=AC,∠BAC=120°時(shí),四邊形AEFD是正方形.其中正確的結(jié)論是 . (請(qǐng)寫(xiě)出正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E為正方形ABCD的邊AB的延長(zhǎng)線上一點(diǎn),DE交AC于點(diǎn)F,交BC于點(diǎn)G,H為GE的中點(diǎn).
求證:FB⊥BH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了了解九年級(jí)女生仰臥起坐訓(xùn)練情況,課外活動(dòng)時(shí)間隨機(jī)抽取10名女生測(cè)試,成績(jī)?nèi)缦卤硭,那么這10名女生測(cè)試成績(jī)的眾數(shù)與中位數(shù)依次是( )
女生編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(jī)/個(gè) | 48 | 49 | 52 | 47 | 51 | 53 | 52 | 49 | 51 | 49 |
A.52,51
B.51,51
C.49,49
D.49,50
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】星期天,小明騎車(chē)從家出發(fā)到某景區(qū)游玩,他先勻速騎了一段上坡路,休息一會(huì)兒,又勻速騎了一段下坡路后到達(dá)目的地,下圖表示的是他騎車(chē)行駛的距離(千米)與行駛時(shí)間(分)之間的變化情況.根據(jù)圖象,回答下列問(wèn)題:
(1)小明家到景區(qū)的距離為 千米;
(2)小明途中休息了 分;
(3)返回途中,若小明的上下坡速度保持不變,并且中途不再休息,求小明從景區(qū)到家所用的時(shí)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com