【題目】用“☆”定義一種新運(yùn)算:對于任意有理數(shù)a和b,規(guī)定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.
(1)求(﹣2)☆3的值;
(2)若( ☆3)☆(- )=8,求a的值;
(3)若2☆x=m,( x)☆3=n(其中x為有理數(shù)),試比較m,n的大。

【答案】
(1)解:(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2 =﹣32;
(2)解: ☆3= ×32+2× ×3+ =8(a+1) 解得:a=3;
(3)解:由題意m=2x2+2×2x+2=2x2+4x+2,

n= ×32+2× x×3+ =4x, 所以m﹣n=2x2+2>0. 所以m>n.


【解析】(1)根據(jù)題中規(guī)定a☆b=ab2+2ab+a,代入求解即可;
(2)根據(jù)題中定義的新運(yùn)算“☆”,轉(zhuǎn)化為關(guān)于a的一元一次方程,解方程即可;
(3)根據(jù)題中定義的新運(yùn)算“☆”,分別表示出m與n的代數(shù)式,利用作差法求得m﹣n>0. 所以m>n.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課上,老師提出如下問題:
如圖1,需要在A,B兩地和公路l之間修地下管道,請你設(shè)計(jì)一種最節(jié)省材料的修建方案.

小軍同學(xué)的作法如下:
①連接AB;
②過點(diǎn)A作AC⊥直線l于點(diǎn)C;
則折線段B﹣A﹣C為所求.
老師說:小軍同學(xué)的方案是正確的.
請回答:該方案最節(jié)省材料的依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若以A(﹣0.5,0)、B(2,0)、C(0,1)三點(diǎn)為頂點(diǎn)要畫平行四邊形,則第四個(gè)頂點(diǎn)不可能在(
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的對角線AC和BD交于點(diǎn)O,則下列不能判斷四邊形ABCD是平行四邊形的條件是(
A.OA=OC,AD∥BC
B.∠ABC=∠ADC,AD∥BC
C.AB=DC,AD=BC
D.∠ABD=∠ADB,∠BAO=∠DCO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對應(yīng)的數(shù)為-10,B點(diǎn)對應(yīng)的數(shù)為70.
(1)請寫出AB的中點(diǎn)M對應(yīng)的數(shù)
(2)現(xiàn)在有一只電子螞蟻P從A點(diǎn)出發(fā),以3個(gè)單位/秒的速度向右運(yùn)動,同時(shí)另一只電子螞蟻Q恰好從B點(diǎn)出發(fā),以2個(gè)單位/秒的速度向左運(yùn)動,設(shè)兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,請你求出C點(diǎn)對應(yīng)的數(shù)
(3)若當(dāng)電子螞蟻P從A點(diǎn)出發(fā),以3個(gè)單位/秒的速度向右運(yùn)動,同時(shí)另一只電子螞蟻Q恰好從B點(diǎn)出發(fā),以2單位/秒的速度向左運(yùn)動,經(jīng)過多長時(shí)間兩只電子螞蟻在數(shù)軸上相距35個(gè)單位長度,并寫出此時(shí)P點(diǎn)對應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的周長為16,AC、BD相交于點(diǎn)O,OE⊥AC交AD于E,則△DCE的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算23的結(jié)果是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程kx2+4x+10有兩個(gè)實(shí)數(shù)根,則k的取值范圍是(  )

A. k4B. k≥4C. k≤4D. k≤4k≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:2x2-(2x-4y)-2(x2-y),其中x=-1,y=2.

查看答案和解析>>

同步練習(xí)冊答案