【題目】如圖,在矩形ABCD中,BC=24cmP,QM,N分別從AB,C,D出發(fā)沿AD,BC,CB,DA方向在矩形的邊上同時運動,當有一個點先到達所在運動邊的另一個端點時,運動即停止.

已知在相同時間內(nèi),若BQ=x cmx≠0),則AP=2x cm,CM=3x cm,DN=x2cm

1)當x為何值時,以P、N兩點重合?

2)問Q、M兩點能重合嗎?若Q、M兩點能重合,則求出相應(yīng)的x的值;若Q、M兩點不能重合,請說明理由.

3)當x為何值時,以PQ,M,N為頂點的四邊形是平行四邊形.

【答案】(1)4;(2)點Q與點M不能重合.理由見解析;(3)x=2或x=﹣3+.

【解析】解:(1)當點P與點N重合時,

,得(舍去)

所以時點P與點N重合 2

2) 當點Q與點M重合時,

,得----------3

此時,不符合題意.

故點Q與點M不能重合.---------4

3)由(1)知,點Q 只能在點M的左側(cè),

當點P在點N的左側(cè)時,

,

解得

x=2時四邊形PQMN是平行四邊形. 6

當點P在點N的右側(cè)時,

,

解得(舍去).

x=-3+時四邊形NQMP是平行四邊形. 8

綜上:當x=2x=-3+時,以P,QM,N為頂點的四邊形是平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CD相交于點O,OE平分AOD,OFOC,

1圖中AOF的余角是 把符合條件的角都填出來;

2如果AOC=160°,那么根據(jù) 可得BOD= 度;

3如果1=32°,求2和3的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校有3名老師決定帶領(lǐng)名小學(xué)生去植物園游玩,有兩家旅行社可供選擇,甲旅行社的收費標準為老師全價,學(xué)生七折優(yōu)惠;而乙旅行社不分老師和學(xué)生一律八折優(yōu)惠,這兩家旅行社全價都是每人500.

1)用代數(shù)式表示這3位老師和名學(xué)生分別在甲、乙兩家旅行社的總費用;

2)如果這兩家旅行社的總費用一樣,那么老師可以帶幾名學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市公共交通收費如下:

公交票價

里程(千米)

票價(元)

刷卡優(yōu)惠后付款(元)

0-10

2

1

10-15

3

1.5

15-20

4

2

20-25

5

2.5

25-30

6

3

以后每增加5千米

增加1

增加0.5

地鐵票價

里程(千米)

票價(元)

0-6

3

6-12

4

12-22

5

22-32

6

32-52

7

52-72

8

以后每增加20千米

增加1

(公交票價10千米(含)內(nèi)2元,不足10千米按10千米計算,其他里程類同;地鐵票價6千米(含)內(nèi)3元,不足6千米按6千米計算,其他里程類同)

1)張阿姨周日去看望父母,可是張阿姨忘了帶一卡通,請你幫助張阿姨思考兩個問題:

若到父母家無論乘公交車還是地鐵距離都是24千米,選擇哪種公交交通工具費用較少?

若只用10元錢乘坐公交或地鐵,選擇哪種公共交通工具乘坐的里程更遠?

2)張阿姨下周日計劃使用一卡通刷卡乘公共交通到景點游玩,若里程大于35千米且小于120千米,公交、地鐵均可直達.請問:選擇公交還是選擇地鐵出行更省錢?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點ECD邊上一點,,連接AE、BE、BD,且AEBD交于點F.若,則( 。

A.15.5B.16.5C.17.5D.18.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為40元,若銷售價為60元,每天可售出20件,為迎接“雙十一”,專賣店決定采取適當?shù)慕祪r措施,以擴大銷售量,經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件童裝降價1元,那么平均可多售出2件,設(shè)每件童裝降價x元(x>0)時,平均每天可盈利y元.

(1)寫出y與x的函數(shù)關(guān)系式;

(2)根(1)中你寫出的函數(shù)關(guān)系式,解答下列問題:

①當該專賣店每件童裝降價5元時,平均每天盈利多少元?

②當該專賣店每件童裝降價多少元時,平均每天盈利400元?

③該專賣店要想平均每天盈利600元,可能嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

問題情境:

(1)如圖1,兩塊等腰直角三角板△ABC和△ECD如圖所示擺放,其中∠ACB=∠DCE=90°,點F,H,G分別是線段DE,AE,BD的中點,A,C,D和B,C,E分別共線,則FH和FG的數(shù)量關(guān)系是   ,位置關(guān)系是   

合作探究:

(2)如圖2,若將圖1中的△DEC繞著點C順時針旋轉(zhuǎn)至A,C,E在一條直線上,其余條件不變,那么(1)中的結(jié)論還成立嗎?若成立,請證明,若不成立,請說明理由.

(3)如圖3,若將圖1中的△DEC繞著點C順時針旋轉(zhuǎn)一個銳角,那么(1)中的結(jié)論是否還成立?若成立,請證明,若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】、兩地相距,甲、乙兩車分別沿同一條路線從地出發(fā)駛往地,已知甲車的速度為,乙車的速度為,甲車先出發(fā)后乙車再出發(fā),乙車到達地后再原地等甲車.

(1)求乙車出發(fā)多長時間追上甲車?

(2)求乙車出發(fā)多長時間與甲車相距

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)知識延伸:如圖1,在中,,,根據(jù)三角函數(shù)的定義得: ;

(2)拓展運用:如圖2,在銳角三角形中,

①求證:;

②已知:,求的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案