精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知拋物線yax2+bx+3經過點A(﹣10)、B30)兩點,且交y軸交于點C

1)求拋物線的解析式;

2)點M是線段BC上的點(不與B、C重合),過MMNy軸交拋物線于N,若點M的橫坐標為m,請用m的代數式表示MN的長;

3)在(2)的條件下,連接NB,NC,是否存在點M,使BNC的面積最大?若存在,求m的值;若不存在,說明理由.

【答案】1y=﹣x2+2x+3;(2MN=﹣m2+3m0m3);(3)存在,當m時,BNC的面積最大,最大值為

【解析】

1)直接利用待定系數法即可求出拋物線的解析式;

2)先利用待定系數法求出直線BC的解析式,已知點M的橫坐標,代入直線BC、拋物線的解析式中,可得到M、N點的坐標,N、M縱坐標的差的絕對值即為MN的長;

3)根據題(1)(2)的結論,列出關于m的表達式,再利用函數的性質求解的最大值即可.

1)拋物線經過點兩點,代入得:

,解得:

則拋物線的解析式為;

2)由拋物線可知,

因此,設直線BC的解析式為:

代入

解得:

則直線BC的解析式:

已知點M的橫坐標為m,且軸,則

MN的長為;

3)存在點M,使的面積最大

如圖,過點M軸于點D

由二次函數的性質可知:當時,m的增大而增大;當時,m的增大而減小

則當時,的面積最大,最大值為.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】成都市某景區(qū)經營一種新上市的紀念品,進價為20/件,試營銷階段發(fā)現(xiàn);當銷售單價是30元時,每天的銷售量為200件;銷售單價每上漲2元,每天的銷售量就減少10.這種紀念品的銷售單價為x(元).

1)試確定日銷售量y(臺)與銷售單價為x(元)之間的函數關系式;

2)若要求每天的銷售量不少于15件,且每件紀念品的利潤至少為30元,則當銷售單價定為多少時,該紀念品每天的銷售利潤最大,最大利潤為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線yx+4與拋物線y=﹣x2+bx+cb,c是常數)交于AB兩點,點Ax軸上,點By軸上.設拋物線與x軸的另一個交點為點C

1)求該拋物線的解析式;

2P是拋物線上一動點(不與點AB重合),

①如圖2,若點P在直線AB上方,連接OPAB于點D,求的最大值;

②如圖3,若點Px軸的上方,連接PC,以PC為邊作正方形CPEF,隨著點P的運動,正方形的大小、位置也隨之改變.當頂點EF恰好落在y軸上,直接寫出對應的點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某租賃公司擁有汽車100輛.據統(tǒng)計,當每輛車的月租金為3000元時,可全部租出.每輛車的月租金每增加50元時,未租出的車將會增加1輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.

1)當每輛車的月租金定為3600元時,能租出多少輛車?

2)當每輛車的租金定為多少元時,租賃公司的月收益(租金收入扣除維護費)可達到306600元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,∠B90°,AB6cm,BC8cm,點PA點開始沿AB邊向點B1cm/秒的速度移動,同時點QB點開始沿BC邊向點C2cm/秒的速度移動,且當其中一點到達終點時,另一個點隨之停止移動.

1PQ兩點出發(fā)幾秒后,可使PBQ的面積為8cm2

2)設PQ兩點同時出發(fā)移動的時間為t秒,PBQ的面積為Scm2,請寫出St的函數關系式,并求出PBQ面積的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將水平放置的三角板ABC繞直角頂點A逆時針旋轉,得到AB'C',連結并延長BB'、C'C相交于點P,其中∠ABC30°,BC4

1)若記B'C'中點為點D,連結PD,則PD_____

2)若記點P到直線AC'的距離為d,則d的最大值為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知菱形OABC的邊長為5,且tanAOC,點E是線段BC的中點,過點A、E的拋物線yax2+bx+c與邊AB交于點D

1)求點A和點E的坐標;

2)連結DE,將BDE沿著DE翻折.

①當點B的對應點B'恰好落在線段AC上時,求點D的坐標;

②連接OB、BB',請直接寫出此時該拋物線二次項系數a   

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,OAC上一點,以點O為圓心,OC為半徑做圓,與BC相切于點C,過點AADBOBO的廷長線于點D,且∠AOD=BAD

1)求證:AB為⊙O的切線;

2)若BC=6,tanABC=,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xoy中,直線與x 軸交于點A,與y軸交于點C.拋物線y=ax2+bx+c的對稱軸是且經過A、C兩點,與x軸的另一交點為點B.

(1)①直接寫出點B的坐標;②求拋物線解析式.

(2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求△PAC的面積的最大值,并求出此時點P的坐標.

(3)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案