【題目】如圖1,點D為△ABCBC的延長線上一點.

(1)若∠A∶∠ABC=3∶4,∠ACD=140°,求∠A的度數(shù);

(2)若∠ABC的角平分線與∠ACD的角平分線交于點M,過點CCPBM于點P

求證:

(3)在(2)的條件下,將△MBC以直線BC為對稱軸翻折得到△NBC,∠NBC的角平分線與∠NCB的角平分線交于點Q(如圖2),試探究∠BQC與∠A有怎樣的數(shù)量關(guān)系,請寫出你的猜想并證明.

【答案】(1)60°°;

(2)證明見解析;

(3)∠BQC=90°+ ∠A,理由見解析.

【解析】試題分析:(1)先根據(jù)∠A:∠ABC=3:4,設(shè)∠A=3k,∠ABC=4k,再由三角形外角的性質(zhì)求出k的值,進(jìn)而可得出結(jié)論;

(2)根據(jù)三角形外角的性質(zhì)得出∠M=MCD-MBC,A=ACD-ABC.再由MC、MB分別平分∠ACDABC得出 , ,

,根據(jù)CPBM即可得出結(jié)論;

(3)根據(jù)BQ平分∠CBN,CQ平分∠BCN可知 , ,再根據(jù)三角形內(nèi)角和定理可知, ,根據(jù)軸對稱性質(zhì)知:

M=∠N,由此可得出結(jié)論.

(1)解:∵,∴可設(shè)

又∵ °,

°,

解得 °.

°.

(2)證明:

(3)猜想∠BQC=90°+ ∠A.

證明如下: ∵BQ平分∠CBN,CQ平分∠BCN,

,

由(2)知: ,又由軸對稱性質(zhì)知:∠M=∠N,

本題考查了三角形的內(nèi)角和,三角形外角的性質(zhì),折疊的性質(zhì).(1)見比設(shè)參,然后根據(jù)外角的性質(zhì)求解;(2)結(jié)合角平分線和外角的性質(zhì)求解;(2)根據(jù)軸對稱的性質(zhì)和(2)的結(jié)論求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解全校1500名學(xué)生對學(xué)校設(shè)置的籃球、羽毛球、乒乓球、踢毽子、跳繩共5項體育活動的喜愛情況,在全校范圍內(nèi)隨機(jī)抽查部分學(xué)生,對他們喜愛的體育項目(每人只選一項)進(jìn)行了問卷調(diào)查,將統(tǒng)計數(shù)據(jù)繪制成如圖兩幅不完整統(tǒng)計圖,請根據(jù)圖中提供的信息解答下列各題.

(1)m= %,這次共抽取了 名學(xué)生進(jìn)行調(diào)查;并補(bǔ)全條形圖;

(2)請你估計該校約有 名學(xué)生喜愛打籃球;

(3)現(xiàn)學(xué)校準(zhǔn)備從喜歡跳繩活動的4人(三男一女)中隨機(jī)選取2人進(jìn)行體能測試,請利用列表或畫樹狀圖的方法,求抽到一男一女學(xué)生的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+2與x軸交于點A,與y軸交于點B,把△AOB沿y軸翻折,點A落到點C,過點B的拋物線y=-x2+bx+c與直線BC交于點D(3,-4).

(1)求直線BD和拋物線的解析式;

(2)在第一象限內(nèi)的拋物線上,是否存在一點M,作MN垂直于x軸,垂足為點N,使得以M、O、N為頂點的三角形與△BOC相似?若存在,求出點M的坐標(biāo);若不存在,請說明理由;

(3)在直線BD上方的拋物線上有一動點P,過點P作PH垂直于x軸,交直線BD于點H,當(dāng)四邊形BOHP是平行四邊形時,試求動點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知代數(shù)式-m24m4,無論m取任何值,它的值一定是(

A. 正數(shù)B. 負(fù)數(shù)C. 非正數(shù)D. 非負(fù)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中的真命題是

A.三個角相等的四邊形是矩形

B.對角線互相垂直且相等的四邊形是正方形

C.順次連接矩形四邊中點得到的四邊形是菱形

D.正五邊形既是軸對稱圖形又是中心對稱圖形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某旅行社組團(tuán)去外地旅游,30人起組團(tuán),每人單價800元.旅行社對超過30人的團(tuán)給予優(yōu)惠,即旅行團(tuán)的人數(shù)每增加一人,每人的單價就降低10元.當(dāng)一個旅行團(tuán)的人數(shù)是______人時,這個旅行社可以獲得最大的營業(yè)額.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知(x+y)2=1,(x﹣y)2=49,求x2+y2與xy的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某城市按以下規(guī)定收取每月煤氣費,用煤氣不超過60立方米,按每立方米0.8元收費;如果超過60立方米, 超過部分按每立方米1.2元收費.已知甲用戶某月份用煤氣80每立方米,那么這個月甲用戶應(yīng)交煤氣費 ( )

A. 64 B. 66 C. 72 D. 96

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算(-2a2b)2=____________________.

查看答案和解析>>

同步練習(xí)冊答案