【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點,AE=CF,連接EF、BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC.
(1)求證:OE=OF;
(2)若BC=2 ,求AB的長.
【答案】
(1)證明:在矩形ABCD中,AB∥CD,
∴∠BAC=∠FCO,
在△AOE和△COF中,
,
∴△AOE≌△COF(AAS),
∴OE=OF
(2)解:如圖,連接OB,
∵BE=BF,OE=OF,
∴BO⊥EF,
∴在Rt△BEO中,∠BEF+∠ABO=90°,
由直角三角形斜邊上的中線等于斜邊上的一半可知:OA=OB=OC,
∴∠BAC=∠ABO,
又∵∠BEF=2∠BAC,
即2∠BAC+∠BAC=90°,
解得∠BAC=30°,
∵BC=2 ,
∴AC=2BC=4 ,
∴AB= = =6.
【解析】(1)依據(jù)矩形的性質(zhì)可知AB∥CD,然后,再根據(jù)平行線的性質(zhì)可得到∠BAC=∠FCO,接下來,利用“AAS”可證明△AOE≌△COF,再根據(jù)全等三角形的即可得證;
(2)連接OB,首先依據(jù)等腰三角形三線合一的性質(zhì)可知BO⊥EF,然后再根據(jù)矩形的性質(zhì)可得出OA=OB,接下來,再根據(jù)等邊對等角的性質(zhì)證明∠BAC=∠ABO,然后依據(jù)三角形的內(nèi)角和定理可得到∠BAC=30°,在Rt△ABC中,依據(jù)含30°直角三角形的性質(zhì)可求得AC的長,最后,再利用勾股定理可求得AB的長.
【考點精析】根據(jù)題目的已知條件,利用等腰三角形的性質(zhì)和含30度角的直角三角形的相關(guān)知識可以得到問題的答案,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南沙群島是我國固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進(jìn)行捕魚作業(yè),當(dāng)漁船航行至B處時,測得該島位于正北方向20(1+ )海里的C處,為了防止某國海巡警干擾,就請求我A處的漁監(jiān)船前往C處護航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰和小明沿同一條筆直的馬路同時從學(xué)校出發(fā)到某圖書館查閱資料,學(xué)校與 圖書館的路程是 千米,小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時,小明剛好到 達(dá)圖書館,圖中折線 和線段 分別表示兩人離學(xué)校的路程 (千米)與所經(jīng)過的 時間 (分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖像回答下列問題:
(1)小聰在圖書館查閱資料的時間為 分鐘;小聰返回學(xué)校的速度為 千米/分鐘.
(2)請你求出小明離開學(xué)校的路程 (千米)與所經(jīng)過的時間 (分鐘)之間的函數(shù)表達(dá)式;
(3)若設(shè)兩人在路上相距不超過 千米時稱為可以“互相望見”,則小聰和小明可以“互相 望見”的時間共有多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點分別在x軸、y軸上,OA=3,OB=4,連接AB.點P在平面內(nèi),若以點P、A、B為頂點的三角形與△AOB全等(點P與點O不重合),則點P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=60°,點P是射線AM上一動點(與點A不重合),BC,BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.
(1)求∠CBD的度數(shù);
(2)當(dāng)點P運動時,∠APB:∠ADB的比值是否隨之變化?若不變,請求出這個比值;若變化,請找出變化規(guī)律;
(3)當(dāng)點P運動到某處時,∠ACB=∠ABD,求此時∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=-x+3的圖像分別與x軸、y軸交于A、B兩點.動點P從A點開始沿折線AO-OB-BA運動,點P在AO,OB,BA上運動的速度分別為1,,2 (長度單位/秒);動點E從O點開始以(長度單位/秒)的速度沿線段OB運動.設(shè)P、E兩點同時出發(fā),運動時間為t (秒),當(dāng)點P沿折線AO-OB-BA運動一周時,動點E和P同時停止運動.過點E作EF∥OA,交AB于點F.
(1)求線段AB的長;
(2)求證:∠ABO=30°;
(3)當(dāng)t為何值時,點P與點E重合?
(4)當(dāng)t = 時,PE=PF .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過點C,過A作AD⊥ED于點D,過B作BE⊥ED于點E.
求證:△BEC≌△CDA;
(模型應(yīng)用)
(2)①已知直線l1:y=x+4與坐標(biāo)軸交于點A、B,將直線l1繞點A逆時針旋轉(zhuǎn)45o至直線l2,如圖2,求直線l2的函數(shù)表達(dá)式;
②如圖3,長方形ABCO,O為坐標(biāo)原點,點B的坐標(biāo)為(8,-6),點A、C分別在坐標(biāo)軸上,點P是線段BC上的動點,點D是直線y=-2x+6上的動點且在第四象限.若△APD是以點D為直角頂點的等腰直角三角形,請直接寫出點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,對稱軸為直線x= 的拋物線經(jīng)過B(2,0)、C(0,4)兩點,拋物線與x軸的另一交點為A
(1)求拋物線的解析式;
(2)若點P為第一象限內(nèi)拋物線上的一點,設(shè)四邊形COBP的面積為S,求S的最大值;
(3)如圖2,若M是線段BC上一動點,在x軸是否存在這樣的點Q,使△MQC為等腰三角形且△MQB為直角三角形?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上有A、B、C、D四個整數(shù)點即各點均表示整數(shù),且,若A、D兩點表示的數(shù)的分別為和6,點E為BD的中點,那么該數(shù)軸上上述五個點所表示的整數(shù)中,離線段BD的中點最近的整數(shù)是
A. B. 0C. 1D. 2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com