【題目】如圖,平行四邊形ABCD的頂點A、C在雙曲線y1=﹣ 上,B、D在雙曲線y2= 上,k1=2k2(k1>0),AB∥y軸,SABCD=24,則k1= .
【答案】8
【解析】解:在ABCD中,AB∥CD,AB=CD(平行四邊形的對應邊平行且相等),故設(shè)A(x,y1)、B(x、y2),則根據(jù)反比例函數(shù)的圖象關(guān)于原點對稱的性質(zhì)知,C(﹣x,﹣y1)、D(﹣x、﹣y2).
∵A在雙曲線y1=﹣ 上,B在雙曲線y2= 上,
∴x=﹣ ,x= ,
∴﹣ = ;
又∵k1=2k2(k1>0),
∴y1=﹣2y2;
∵SABCD=24,
∴ |2x|=6|y2x|=24,
解得,y2x=±4,
∵雙曲線y2= 位于第一、三象限,
∴k2=4,
∴k1=2k2=8
故答案是:8.
利用平行四邊形的性質(zhì)設(shè)A(x,y1)、B(x、y2),根據(jù)反比例函數(shù)的圖象關(guān)于原點對稱的性可知C(﹣x,﹣y1)、D(﹣x、﹣y2);然后由反比例函數(shù)圖象上點的坐標特征,將點A、B的坐標分別代入它們所在的函數(shù)圖象的解析式,求得y1=﹣2y2;最后根據(jù)SABCD= |2x|=24可以求得k2=y2x=4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一副三角尺的直角頂點疊放在點C處,∠D=30°,∠B=45°,求:
(1)若∠DCE=35°,求∠ACB的度數(shù);(2)若∠ACB=120°,求∠DCE的度數(shù).
(3)猜想∠ACB和∠DCE的關(guān)系,并說明理由;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“摩拜單車”公司調(diào)查無錫市民對其產(chǎn)品的了解情況,隨機抽取部分市民進行問卷,結(jié)果分“非常了解”、“比較了解”、“一般了解”、“不了解”四種類型,分別記為、、、.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.
(1)本次問卷共隨機調(diào)查了 名市民,扇形統(tǒng)計圖中 .
(2)請根據(jù)數(shù)據(jù)信息補全條形統(tǒng)計圖.
(3)扇形統(tǒng)計圖中“D類型”所對應的圓心角的度數(shù)是 .
(4)從這次接受調(diào)查的市民中隨機抽查一個,恰好是“不了解”的概率是 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把所有正偶數(shù)從小到大排列,并按如下規(guī)律分組:
第一組:2,4;
第二組:6,8,10,12;
第三組:14,16,18,20,22,24
第四組:26,28,30,32,34,36,38,40
……
則現(xiàn)有等式Am=(i,j)表示正偶數(shù)m是第i組第j個數(shù)(從左到右數(shù)),如A10=(2,3),則A2018=( )
A. (31,63) B. (32,17) C. (33,16) D. (34,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將數(shù)1個1,2個,3個,…,n個(n為正整數(shù))順次排成一列:1,,,,,,…,,,…,記a1=1,a2=,a3=,…,S1=a1,S2=a1+a2,S3=a1+a2+a3,…,Sn=a1+a2+…+an,則S2018=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=6cm,點P從點A出發(fā),沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒1cm的速度向終點C運動,將△PQC沿BC翻折,點P的對應點為點P′.設(shè)點Q運動的時間為t秒,若四邊形QPCP′為菱形,則t的值為( )
A. B. 2 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了促進節(jié)能減排,倡導節(jié)約用電,某市將實行居民生活用電階梯電價方案,圖中折線反映了每戶每月用電電費y(元)與用電量x(度)間的函數(shù)關(guān)系式.
(1)根據(jù)圖象,階梯電價方案分為三個檔次,填寫下表:
檔次 | 第一檔 | 第二檔 | 第三檔 |
每月用電量x(度) | 0<x≤140 |
(2)小明家某月用電120度,需交電費元;
(3)求第二檔每月電費y(元)與用電量x(度)之間的函數(shù)關(guān)系式;
(4)在每月用電量超過230度時,每多用1度電要比第二檔多付電費m元,小剛家某月用電290度,交電費153元,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=30°,將△DCB繞點C順時針旋轉(zhuǎn)60°后,點D的對應點恰好與點A重合,得到△ACE,若AB=3,BC=4,則BD=(提示:可連接BE)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,點P(1,0).點P第1次向上跳動1個單位至點P1(1,1),緊接著第2次向左跳動2個單位至點P2(-1,1),第3次向上跳動1個單位至點P3,第4次向右跳動3個單位至點P4,第5次又向上跳動1個單位至點P5,第6次向左跳動4個單位至點P6,…….照此規(guī)律,點P第100次跳動至點P100的坐標是( )
A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com