10、小明、小亮、小梅、小花四人共同探討代數(shù)式x2-6x+10的值的情況.他們作了如下分工:小明負責找其值為1時的x的值,小亮負責找其值為0時的x的值,小梅負責找最小值,小花負責找最大值,幾分鐘后,各自通報探究的結論,其中錯誤的是( 。
分析:根據(jù)函數(shù)的定義函數(shù)值隨自變量的值的變化而變化,因此在二次函數(shù)中確定其最大值或最小值與給定的取值范圍有關,所以正確分析題意解決問題.
解答:解:A、小明認為只有當x=3時,x2-6x+10的值為1.此說法正確.∵x2-6x+10=1,解得:x=3,∴正確.
B、小亮認為找不到實數(shù)x,使x2-6x+10的值為0.此說法正確.∵方程x2-6x+10=0無解,∴正確.
C、小梅發(fā)現(xiàn)x2-6x+10的值隨x的變化而變化,因此認為沒有最小值.此說法錯誤.∵函數(shù)y=x2-6x+10的開口向上,∴有最小值且最小值為1.
D、小花發(fā)現(xiàn)當x取大于3的實數(shù)時,x2-6x+10的值隨x的增大而增大,因此認為沒有最大值.此說法正確.
故答案選C.
點評:本題主要考查了二次函數(shù)的最值與一元二次方程的關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009-2010學年浙江省湖州市實驗中學九年級(上)期末數(shù)學試卷(上下冊)(解析版) 題型:選擇題

小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況.他們作了如下分工:小明負責找值為1時x的值,小亮負責找值為0時x的值,小梅負責找最小值,小花負責找最大值.幾分鐘后,各自通報探究的結論,其中錯誤的是( )
A.小明認為只有當x=2時,x2-4x+5的值為1
B.小亮認為找不到實數(shù)x,使x2-4x+5的值為0
C.小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認為沒有最小值
D.小花發(fā)現(xiàn)當x取大于2的實數(shù)時,x2-4x+5的值隨x的增大而增大,因此認為沒有最大值

查看答案和解析>>

科目:初中數(shù)學 來源:2009年重慶市云陽中學初三第二次月考數(shù)學試卷(解析版) 題型:選擇題

小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況.他們作了如下分工:小明負責找值為1時x的值,小亮負責找值為0時x的值,小梅負責找最小值,小花負責找最大值.幾分鐘后,各自通報探究的結論,其中錯誤的是( )
A.小明認為只有當x=2時,x2-4x+5的值為1
B.小亮認為找不到實數(shù)x,使x2-4x+5的值為0
C.小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認為沒有最小值
D.小花發(fā)現(xiàn)當x取大于2的實數(shù)時,x2-4x+5的值隨x的增大而增大,因此認為沒有最大值

查看答案和解析>>

科目:初中數(shù)學 來源:2008-2009學年江蘇省鎮(zhèn)江市九年級(上)期末數(shù)學試卷(解析版) 題型:選擇題

小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況.他們作了如下分工:小明負責找值為1時x的值,小亮負責找值為0時x的值,小梅負責找最小值,小花負責找最大值.幾分鐘后,各自通報探究的結論,其中錯誤的是( )
A.小明認為只有當x=2時,x2-4x+5的值為1
B.小亮認為找不到實數(shù)x,使x2-4x+5的值為0
C.小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認為沒有最小值
D.小花發(fā)現(xiàn)當x取大于2的實數(shù)時,x2-4x+5的值隨x的增大而增大,因此認為沒有最大值

查看答案和解析>>

科目:初中數(shù)學 來源:《22.2 降次-解一元二次方程》2009年同步練習(2)(解析版) 題型:選擇題

小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況.他們作了如下分工:小明負責找值為1時x的值,小亮負責找值為0時x的值,小梅負責找最小值,小花負責找最大值.幾分鐘后,各自通報探究的結論,其中錯誤的是( )
A.小明認為只有當x=2時,x2-4x+5的值為1
B.小亮認為找不到實數(shù)x,使x2-4x+5的值為0
C.小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認為沒有最小值
D.小花發(fā)現(xiàn)當x取大于2的實數(shù)時,x2-4x+5的值隨x的增大而增大,因此認為沒有最大值

查看答案和解析>>

科目:初中數(shù)學 來源:2013年山東省東營市中考數(shù)學模擬試卷(二)(解析版) 題型:選擇題

小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況.他們作了如下分工:小明負責找值為1時x的值,小亮負責找值為0時x的值,小梅負責找最小值,小花負責找最大值.幾分鐘后,各自通報探究的結論,其中錯誤的是( )
A.小明認為只有當x=2時,x2-4x+5的值為1
B.小亮認為找不到實數(shù)x,使x2-4x+5的值為0
C.小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認為沒有最小值
D.小花發(fā)現(xiàn)當x取大于2的實數(shù)時,x2-4x+5的值隨x的增大而增大,因此認為沒有最大值

查看答案和解析>>

同步練習冊答案