小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況.他們作了如下分工:小明負(fù)責(zé)找值為1時(shí)x的值,小亮負(fù)責(zé)找值為0時(shí)x的值,小梅負(fù)責(zé)找最小值,小花負(fù)責(zé)找最大值.幾分鐘后,各自通報(bào)探究的結(jié)論,其中錯(cuò)誤的是( )
A.小明認(rèn)為只有當(dāng)x=2時(shí),x2-4x+5的值為1
B.小亮認(rèn)為找不到實(shí)數(shù)x,使x2-4x+5的值為0
C.小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認(rèn)為沒(méi)有最小值
D.小花發(fā)現(xiàn)當(dāng)x取大于2的實(shí)數(shù)時(shí),x2-4x+5的值隨x的增大而增大,因此認(rèn)為沒(méi)有最大值
【答案】分析:根據(jù)二次函數(shù)的最值及圖象上點(diǎn)的坐標(biāo)特點(diǎn)解答即可.
解答:解:A、因?yàn)樵搾佄锞的頂點(diǎn)是(2,1),所以正確;
B、根據(jù)二次函數(shù)的頂點(diǎn)坐標(biāo),知它的最小值是1,正確;
C、因?yàn)槎雾?xiàng)系數(shù)為1>0,開(kāi)口向上,有最小值,錯(cuò)誤;
D、根據(jù)圖象,知對(duì)稱軸的右側(cè),即x>2時(shí),y隨x的增大而增大,正確.
故選C.
點(diǎn)評(píng):本題考查的是二次函數(shù)的最值及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),比較簡(jiǎn)單.
科目:初中數(shù)學(xué)
來(lái)源:2009-2010學(xué)年浙江省湖州市實(shí)驗(yàn)中學(xué)九年級(jí)(上)期末數(shù)學(xué)試卷(上下冊(cè))(解析版)
題型:選擇題
小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況.他們作了如下分工:小明負(fù)責(zé)找值為1時(shí)x的值,小亮負(fù)責(zé)找值為0時(shí)x的值,小梅負(fù)責(zé)找最小值,小花負(fù)責(zé)找最大值.幾分鐘后,各自通報(bào)探究的結(jié)論,其中錯(cuò)誤的是( )
A.小明認(rèn)為只有當(dāng)x=2時(shí),x2-4x+5的值為1
B.小亮認(rèn)為找不到實(shí)數(shù)x,使x2-4x+5的值為0
C.小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認(rèn)為沒(méi)有最小值
D.小花發(fā)現(xiàn)當(dāng)x取大于2的實(shí)數(shù)時(shí),x2-4x+5的值隨x的增大而增大,因此認(rèn)為沒(méi)有最大值
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:2009年重慶市云陽(yáng)中學(xué)初三第二次月考數(shù)學(xué)試卷(解析版)
題型:選擇題
小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況.他們作了如下分工:小明負(fù)責(zé)找值為1時(shí)x的值,小亮負(fù)責(zé)找值為0時(shí)x的值,小梅負(fù)責(zé)找最小值,小花負(fù)責(zé)找最大值.幾分鐘后,各自通報(bào)探究的結(jié)論,其中錯(cuò)誤的是( )
A.小明認(rèn)為只有當(dāng)x=2時(shí),x2-4x+5的值為1
B.小亮認(rèn)為找不到實(shí)數(shù)x,使x2-4x+5的值為0
C.小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認(rèn)為沒(méi)有最小值
D.小花發(fā)現(xiàn)當(dāng)x取大于2的實(shí)數(shù)時(shí),x2-4x+5的值隨x的增大而增大,因此認(rèn)為沒(méi)有最大值
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:《22.2 降次-解一元二次方程》2009年同步練習(xí)(2)(解析版)
題型:選擇題
小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況.他們作了如下分工:小明負(fù)責(zé)找值為1時(shí)x的值,小亮負(fù)責(zé)找值為0時(shí)x的值,小梅負(fù)責(zé)找最小值,小花負(fù)責(zé)找最大值.幾分鐘后,各自通報(bào)探究的結(jié)論,其中錯(cuò)誤的是( )
A.小明認(rèn)為只有當(dāng)x=2時(shí),x2-4x+5的值為1
B.小亮認(rèn)為找不到實(shí)數(shù)x,使x2-4x+5的值為0
C.小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認(rèn)為沒(méi)有最小值
D.小花發(fā)現(xiàn)當(dāng)x取大于2的實(shí)數(shù)時(shí),x2-4x+5的值隨x的增大而增大,因此認(rèn)為沒(méi)有最大值
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:2013年山東省東營(yíng)市中考數(shù)學(xué)模擬試卷(二)(解析版)
題型:選擇題
小明、小亮、小梅、小花四人共同探究代數(shù)式x2-4x+5的值的情況.他們作了如下分工:小明負(fù)責(zé)找值為1時(shí)x的值,小亮負(fù)責(zé)找值為0時(shí)x的值,小梅負(fù)責(zé)找最小值,小花負(fù)責(zé)找最大值.幾分鐘后,各自通報(bào)探究的結(jié)論,其中錯(cuò)誤的是( )
A.小明認(rèn)為只有當(dāng)x=2時(shí),x2-4x+5的值為1
B.小亮認(rèn)為找不到實(shí)數(shù)x,使x2-4x+5的值為0
C.小梅發(fā)現(xiàn)x2-4x+5的值隨x的變化而變化,因此認(rèn)為沒(méi)有最小值
D.小花發(fā)現(xiàn)當(dāng)x取大于2的實(shí)數(shù)時(shí),x2-4x+5的值隨x的增大而增大,因此認(rèn)為沒(méi)有最大值
查看答案和解析>>