【題目】(數(shù)學閱讀)
如圖1,在△ABC中,AB=AC,點P為邊BC上的任意一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點C作CF⊥AB,垂足為F,求證:PD+PE=CF.
小堯的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
(推廣延伸)
如圖3,當點P在BC延長線上時,其余條件不變,請運用上述解答中所積累的經(jīng)驗和方法,猜想PD,PE與CF的數(shù)量關系,并證明.
(解決問題)
如圖4,在平面直角坐標系中有兩條直線l1:y=-x+3,l2:y=3x+3,l1,l2與x軸的交點分別為A,B.
(1)兩條直線的交點C的坐標為 ;
(2)說明△ABC是等腰三角形;
(3)若l2上的一點M到l1的距離是1,運用上面的結論,求點M的坐標.
【答案】【推廣延伸】猜想:PD-PE=CF,證明見解析;【解決問題】(1)C(0,3);(2)證明見解析;(3)M(-,2)或M(,4).
【解析】
【推廣延伸】根據(jù)題意,猜想:PD-PE=CF,由S△APB-S△ACP=S△ABC進行作答. 【解決問題】(1)由兩直線相交知,聯(lián)立方程組,得到C的坐標; (2)根據(jù)方程組將A,B點求出,得AB線段長,由勾股定理得AC線段長,即可證明△ABC是等腰三角形;(3)根據(jù)上述結論得ME線段長,由此得到M點的坐標.
推廣延伸
猜想:PD-PE=CF.
證明:如圖,連接AP,
∵ S△APB-S△ACP=S△ABC,.
∴ AB·PD-AC·PE=AB·CF.
∵ AB=AC,
∴ PD-PE=CF.
解決問題
(1)C(0,3).
(2)l1:y=-x+3,令y=0,則x=4,∴A(4,0).
l2:y=3x+3,令y=0,則x=-1,∴B(-1,0),
∴ AB=5.
在Rt△AOC中,∠AOC=90°,
∴ AC2=AO2+CO2 ,∴AC=5.
∴ AB=AC=5,∴ △ABC是等腰三角形.
(3)過M點分別作MD⊥AC,ME⊥AB,垂足分別為D、E.
由上面的結論得:ME+MD=CO或ME-MD=CO,
∴ ME=2或ME=4,∴ M(-,2)或M(,4).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AF、CE分別是∠BAD和∠BCD的角平分線,根據(jù)現(xiàn)有的圖形,請?zhí)砑右粋條件,使四邊形AECF為菱形,則添加的一個條件可以是__________.(只需寫出一個即可,圖中不能再添加別的“點”和“線”)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,直線a 、b被直線c所截,現(xiàn)給出下列四種條件:
①∠2=∠6 ②∠2=∠8 ③∠1+∠4=180° ④∠3=∠8,其中能判斷是a∥b的條件的序號是( )
A. ①② B. ①③ C. ①④ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D是BC上任意一點,過點D分別向AB、AC引垂線,垂足分別為點E、F.
(1)如圖①,當點D在BC的什么位置時,DE=DF?并證明;
(2)在滿足第一問的條件下,連接AD,此時圖中共有幾對全等三角形?請寫出所有的全等三角形(不必證明);
(3)如圖②,過點C作AB邊上的高CG,請問DE、DF、CG的長之間存在怎樣的等量關系?并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C,D是AB的垂直平分線上兩點,延長AC,DB交于點E,AF∥BC交DE于點F.
求證:(1)AB是∠CAF的角平分線;
(2)∠FAD = ∠E.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙兩船從港口A同時出發(fā),甲船以每小時30海里的速度向北偏東35°方向航行,乙船以每小時40海里的速度向另一方向航行,1小時后,甲船到達C島,乙船達到B島,若C、B兩島相距50海里,則乙船的航行方向為南偏東多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知長方形ABCD中,AD=10cm,AB=6cm,點M在邊CD上,由C往D運動,速度為1cm/s,運動時間為t秒,將△ADM沿著AM翻折至△ADM,點D對應點為D,AD所在直線與邊BC交于點P.
(1)如圖1,當t=0時,求證:PA=PC;
(2)如圖2,當t為何值時,點D恰好落在邊BC上;
(3)如圖3,當t=3時,求CP的長.
(
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店銷售一種銷售成本為40元/千克的水產(chǎn)品,若 50元 /千克銷售,一個月可售出500千克,銷售價每漲價1元,月銷售量就減少10千克.
(1)寫出月銷售利潤y(單位:元) 與售價x(單位:元/千克) 之間的函數(shù)解析式.
(2)當售價定為多少時會獲得最大利潤?求出最大利潤.
(3)商店想在月銷售成本不超過10000元的情況下,使月銷售利潤達到8000元銷售單價應定為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)下列要求,解答相關問題.
(1)請補全以下求不等式﹣2x2﹣4x>0的解集的過程.
①構造函數(shù),畫出圖象:根據(jù)不等式特征構造二次函數(shù)y=﹣2x2﹣4x;并在下面的坐標系中(圖1)畫出二次函數(shù)y=﹣2x2﹣4x的圖象(只畫出圖象即可).
②求得界點,標示所需,當y=0時,求得方程﹣2x2﹣4x=0的解為( );并用鋸齒線標示出函數(shù)y=﹣2x2﹣4x圖象中y>0的部分.
③借助圖象,寫出解集:由所標示圖象,可得不等式﹣2x2﹣4x>0的解集為﹣2<x<0.請你利用上面求一元一次不等式解集的過程,求不等式x2﹣2x+1≥4的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com