【題目】如圖,ABCD的對(duì)角線ACBD相交于點(diǎn)M,點(diǎn)M在以AB為直徑的⊙O上,AD與⊙O相交于點(diǎn)E,連接ME

(1)求證:MEMD;

(2)當(dāng)∠DAB30°時(shí),判斷直線CD與⊙O的位置關(guān)系,并說(shuō)明理由.

【答案】(1)證明見(jiàn)解析;(2)直線CD與⊙O相切.

【解析】

1)由圓周角定理可得∠AMB90°,可證ABCD是菱形,可得ADAB,根據(jù)等腰三角形的性質(zhì)和圓內(nèi)接四邊形的性質(zhì)可得∠ADB=∠DEM,即MEIDM;

2)過(guò)OOHCDH,過(guò)DDFABF,由題意可證四邊形OFDH是平行四邊形,可得OHDF,根據(jù)菱形的性質(zhì)和直角三角形的性質(zhì)可得OHAB,根據(jù)切線的判定,可證直線CD與⊙O相切.

證明:(1)AB是⊙O直徑,

∴∠AMB90°,

ABCD是菱形,

ADAB

∴∠ADB=∠ABD,

∵四邊形AEMB是圓內(nèi)接四邊形,

∴∠DEM=∠ABD,

∴∠ADB=∠DEM,

MEMD

(2)直線CD與⊙O相切

理由如下:

過(guò)OOHCDH,過(guò)DDFABF,

DFAB,ABCD,

DFCD,且OHCD

OHDF,且ABCD

∴四邊形OFDH是平行四邊形,

OHDF,

∵在RtADF中,∠DAF30°

DFAD,

又∵四邊形ABCD是菱形,

ADAB,

OHDFADAB,

又∵OHCD

∴直線CD與⊙O相切.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是拋物線y=x2﹣4x+3上的一點(diǎn),以點(diǎn)P為圓心、1個(gè)單位長(zhǎng)度為半徑作⊙P,當(dāng)⊙P與直線y=0相切時(shí),點(diǎn)P的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九大報(bào)告提出了我國(guó)將加大治理環(huán)境污染的力度,還我青山綠水,其中霧霾天氣讓環(huán)保和健康問(wèn)題成為焦點(diǎn),為了調(diào)查學(xué)生對(duì)霧霾天氣知識(shí)的了解程度,某校在全校學(xué)生中抽取400名同學(xué)做了一次調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了不完整的一種統(tǒng)計(jì)圖表.

對(duì)霧霾了解程度的統(tǒng)計(jì)表

對(duì)霧霾的了解程度

百分比

A.非常了解

5%

B.比較了解

m

C.基本了解

45%

D.不了解

n

請(qǐng)結(jié)合統(tǒng)計(jì)圖表,回答下列問(wèn)題:

1)統(tǒng)計(jì)表中:m   ,n   ;

2)請(qǐng)?jiān)趫D1中補(bǔ)全條形統(tǒng)計(jì)圖;

3)請(qǐng)問(wèn)在圖2所示的扇形統(tǒng)計(jì)圖中,D部分扇形所對(duì)應(yīng)的圓心角是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】去學(xué)校食堂就餐,經(jīng)常會(huì)在一個(gè)買(mǎi)菜窗口前等待,經(jīng)調(diào)查發(fā)現(xiàn),同學(xué)的舒適度指數(shù)y與等時(shí)間x(分)之間滿足反比例函數(shù)關(guān)系,如下表:

等待時(shí)間x

1

2

5

10

20

舒適度指數(shù)y

100

50

20

10

5

已知學(xué)生等待時(shí)間不超過(guò)30分鐘

(1)求y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

(2)若等待時(shí)間8分鐘時(shí),求舒適度的值;

(3)舒適度指數(shù)不低于10時(shí),同學(xué)才會(huì)感到舒適.請(qǐng)說(shuō)明,作為食堂的管理員,讓每個(gè)在窗口買(mǎi)菜的同學(xué)最多等待多少時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,AC為直徑,點(diǎn)B是弧AC的中點(diǎn),若AC7BD6,則由四個(gè)弓形組成的陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知拋物線y=ax2+bx的頂點(diǎn)為C(1,),P是拋物線上位于第一象限內(nèi)的一點(diǎn),直線OP交該拋物線對(duì)稱(chēng)軸于點(diǎn)B,直線CPx軸于點(diǎn)A

(1)求該拋物線的表達(dá)式;

(2)如果點(diǎn)P的橫坐標(biāo)為m,試用m的代數(shù)式表示線段BC的長(zhǎng);

(3)如果ABP的面積等于ABC的面積,求點(diǎn)P坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,點(diǎn)P在BA的延長(zhǎng)線上,弦CD交AB于E,連接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,過(guò)E作弦GF⊥BC交圓與G、F兩點(diǎn),連接CF、BG.則下列結(jié)論:①CD⊥AB;②PC是⊙O的切線;③OD∥GF;④弦CF的弦心距等于BG.則其中正確的是( 。

A. ①②④ B. ③④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12)如圖,已知拋物線yax2+bx2(a≠0)x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),直線BD交拋物線于點(diǎn)D,并且D(2,3),B(4,0)

(1)求拋物線的解析式;

(2)已知點(diǎn)M為拋物線上一動(dòng)點(diǎn),且在第三象限,順次連接點(diǎn)B、MC,求△BMC面積的最大值;

(3)(2)中△BMC面積最大的條件下,過(guò)點(diǎn)M作直線平行于y軸,在這條直線上是否存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D在O的直徑AB的延長(zhǎng)線上,點(diǎn)C在O上,AC=CD,ACD=120°.

(1)求證:CD是O的切線;

(2)若O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案