【題目】如圖,將二次函數(shù)y=-(x-2)2+4(x≤4)的圖象沿直線x=4翻折,翻折前后的圖象組成一個新圖象M,若直線y=b和圖象M有四個交點,結(jié)合圖象可知,b的取值范圍是______.
【答案】0<b<4.
【解析】
利用折疊的性質(zhì)確定翻折所得拋物線解析式為y=-(x-6)2+4(x≥4),再求出拋物線y=-(x-2)2+4與x軸的交點坐標為(0,0),(4,0)和拋物線y=-(x-2)2+4與x軸的交點坐標為(8,0),(4,0),從而利用函數(shù)圖象得到當0<b<4時,直線y=b和圖象M有四個交點.
解:二次函數(shù)y=-(x-2)2+4(x≤4)的圖象沿直線x=4翻折所得拋物線解析式為y=-(x-6)2+4(x≥4)
當y=0時,y=-(x-2)2+4=0,解得x1=0,x2=4,則拋物線y=-(x-2)2+4與x軸的交點坐標為(0,0),(4,0),
拋物線y=-(x-2)2+4與x軸的交點坐標為(8,0),(4,0),
所以當0<b<4時,直線y=b和圖象M有四個交點.
故答案是:0<b<4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A、B兩點,與y軸交于C點,直線BD交拋物線于點D,并且D(2,3),tan∠DBA=.
(1)求拋物線的解析式;
(2)已知點M為拋物線上一動點,且在第三象限,順次連接點B、M、C、A,求四邊形BMCA面積的最大值;
(3)在(2)中四邊形BMCA面積最大的條件下,過點M作直線平行于y軸,在這條直線上是否存在一個以Q點為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點A逆時針旋轉(zhuǎn)60°,點O,B的對應點分別為O′,B′,連接BB′,則圖中陰影部分的面積是( )
A. B. 2- C. 2- D. 4-
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點A的坐標為(0,m),且m≠0,點B的坐標為(n,0),將線段AB繞點B順時針旋轉(zhuǎn)90°.得到線段BA1,稱點A1為點A關(guān)于點B的“伴隨點”,圖1為點A關(guān)于點B的“伴隨點”的示意圖
(1)已知點A(0,4),
①當點B的坐標分別為(1,0),(﹣2,0)時,點A關(guān)于點B的“伴隨點”的坐標分別為 , ;
②點(x,y)是點A關(guān)于點B的“伴隨點”,直接寫出y與x之間的關(guān)系式;
(2)如圖2,點C的坐標為(﹣3,0),以C為圓心,為半徑作圓,若在⊙C上存在點A關(guān)于點B的“伴隨點”,直接寫出點A的縱坐標m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某反比例函數(shù)圖象的一支經(jīng)過點A(2,3)和點B(點B在點A的右側(cè)),作BC⊥y軸,垂足為點C,連結(jié)AB,AC.
(1)求該反比例函數(shù)的解析式;
(2)若△ABC的面積為6,求直線AB的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在建設港珠澳大橋期間,大橋的規(guī)劃選線須經(jīng)過中華白海豚國家級自然保護區(qū)---區(qū)域A或區(qū)域B.為實現(xiàn)白海豚“零傷亡,不搬家”的目標,需合理安排施工時間和地點,為此,海豚觀察員在相同條件下連續(xù)出海20天,在區(qū)域A,B兩地對中華白海豚的蹤跡進行了觀測和統(tǒng)計,過程如下,請補充完整.(單位:頭)
(收集數(shù)據(jù))
連續(xù)20天觀察不同中華白海豚每天在區(qū)域A,區(qū)域B出現(xiàn)的數(shù)目情況,得到統(tǒng)計結(jié)果,并按從小到大的順序排列如下:
區(qū)域A 0 1 3 4 5 6 6 6 7 8 8 9 11 14 15 15 17 23 25 30
B 1 1 3 4 6 6 89 11 12 14 15 16 16 16 17 22 25 26 35
(整理、描述數(shù)據(jù))
(1)按如下數(shù)段整理、描述這兩組數(shù)據(jù),請補充完整:
海豚數(shù)x | 0≤x≤7 | 8≤x≤14 | 15≤x≤21 | 22≤x≤28 | 29≤x≤35 |
區(qū)域A | 9 | 5 | 3 | ______ | ______ |
區(qū)域B | 6 | 5 | 5 | 3 | 1 |
(2)兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù),眾數(shù)如下表所示
觀測點 | 極差 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
區(qū)域A | a | 10.65 | b | c |
區(qū)域B | 34 | 13.15 | 13 | 16 |
請?zhí)羁眨荷媳碇,極差a=______,中位數(shù)b=______,眾數(shù)c=______;
(3)規(guī)劃者們選擇了區(qū)域A為大橋的必經(jīng)地,為減少施工對白海豚的影響,合理安排施工時間,估計在接下來的200天施工期內(nèi),區(qū)域A大約有多少天中華白海豚出現(xiàn)的數(shù)目在22≤x≤35的范圍內(nèi)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為18米,從D,E兩處測得路燈B的仰角分別為α和β,且tanα=6,tanβ=,求燈桿AB的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,2017年3月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.
(1)求該快遞公司投遞快遞總件數(shù)的月平均增長率?
(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務員能否完成2017年6月份的快遞投遞任務?如果不能,請問至少需要增加幾名業(yè)務員?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AD為⊙O的直徑,交BC于點E,若DE=2,OE=3,則tanCtanB=( )
A. 2B. 3C. 4D. 5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com