如圖1,在平面直角坐標(biāo)系中,點(diǎn)A、C分別在y軸和x軸上,AB∥x軸,sinC=,點(diǎn)P從O點(diǎn)出發(fā),沿邊OA、AB、BC勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度沿邊CO勻速運(yùn)動(dòng)。點(diǎn)P與點(diǎn)Q同時(shí)出發(fā),其中一點(diǎn)到達(dá)終點(diǎn),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s),△CPQ的面積為S(cm2), 已知S與t之間的函數(shù)關(guān)系如圖2中曲線段OE、線段EF與曲線段FG給出.
(1)點(diǎn)P的運(yùn)動(dòng)速度為 cm/s, 點(diǎn)B、C的坐標(biāo)分別為 , ;
(2)求曲線FG段的函數(shù)解析式;
(3)當(dāng)t為何值時(shí),△CPQ的面積是四邊形OABC的面積的?
解析試題分析:(1)根據(jù)圖2知,點(diǎn)Q運(yùn)動(dòng)2秒時(shí)△CPQ的面積為4cm2,由三角形面積公式可求出點(diǎn)P的運(yùn)動(dòng)速度;當(dāng)Q運(yùn)動(dòng)4.5秒時(shí),△CPQ的面積達(dá)到最大,此時(shí)OA+AB=9,從而求出點(diǎn)B與點(diǎn)A坐標(biāo),由sinC=可求出點(diǎn)C的坐標(biāo);
(2)分段求出函數(shù)解析式;
(3)先求出四邊形OABC的面積,由△CPQ 的面積是四邊形OABC的面積的,即可求出t的值.
試題解析:(1)2,(5,4),(8,0);
(2)i)當(dāng)0≤t≤2時(shí),s=t2;
ii) 當(dāng)2≤t≤4.5時(shí),s=2t;
iii) 當(dāng)4.5≤t≤9時(shí),;
(3)t="4" 或t=5.
考點(diǎn):動(dòng)態(tài)幾何問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)的圖像經(jīng)過點(diǎn)A(6,0)、B(-2,0)和點(diǎn)C(0,-8)
(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的頂點(diǎn)為M,若點(diǎn)K為x軸上的動(dòng)點(diǎn),當(dāng)△KCM的周長最小時(shí),求K的坐標(biāo);
(3)連接AC,有兩動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)O出發(fā),其中點(diǎn)P以每秒3個(gè)單位長度的速度沿折線按O-A-C的路線運(yùn)動(dòng),點(diǎn)Q以每秒8個(gè)單位長度的速度沿折線按O-C-A的路線運(yùn)動(dòng),當(dāng)P、Q兩點(diǎn)相遇時(shí)它們都停止運(yùn)動(dòng),設(shè)P、Q同時(shí)從點(diǎn)O出發(fā)t秒時(shí),△OPQ的面積為S;
①請(qǐng)問P、Q兩點(diǎn)在運(yùn)動(dòng)過程中,是否存在PQ∥OC?若存在,請(qǐng)求出此時(shí)t的值;若不存在,請(qǐng)說明理由;
② 請(qǐng)求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線經(jīng)過點(diǎn)A(1,0),B(5,0),C(0,)三點(diǎn),設(shè)點(diǎn)E(x,y)是拋物線上一動(dòng)點(diǎn),且在x軸下方,四邊形OEBF是以O(shè)B為對(duì)角線的平行四邊形.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)E(x,y)運(yùn)動(dòng)時(shí),試求平行四邊形OEBF的面積S與x之間的函數(shù)關(guān)系式,并求出面積S的最大值?
(3)是否存在這樣的點(diǎn)E,使平行四邊形OEBF為正方形?若存在,求E點(diǎn),F(xiàn)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)y=﹣x2+bx+c的對(duì)稱軸為x=2,且經(jīng)過原點(diǎn),直線AC解析式為y=kx+4,
(1)求二次函數(shù)解析式;
(2)若=,求k;
(3)若以BC為直徑的圓經(jīng)過原點(diǎn),求k.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線C1:y=(x+m)2(m為常數(shù),m>0),平移拋物線y=﹣x2,使其頂點(diǎn)D在拋物線C1位于y軸右側(cè)的圖象上,得到拋物線C2.拋物線C2交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,設(shè)點(diǎn)D的橫坐標(biāo)為a.
(1)如圖1,若m=.
①當(dāng)OC=2時(shí),求拋物線C2的解析式;
②是否存在a,使得線段BC上有一點(diǎn)P,滿足點(diǎn)B與點(diǎn)C到直線OP的距離之和最大且AP=BP?若存在,求出a的值;若不存在,請(qǐng)說明理由;
(2)如圖2,當(dāng)OB=2﹣m(0<m<)時(shí),請(qǐng)直接寫出到△ABD的三邊所在直線的距離相等的所有點(diǎn)的坐標(biāo)(用含m的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=x2+bx+c經(jīng)過點(diǎn)B,且頂點(diǎn)在直線x=上.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點(diǎn)A、B、O的對(duì)應(yīng)點(diǎn)分別是D、C、E,當(dāng)四邊形ABCD是菱形時(shí),試判斷點(diǎn)C和點(diǎn)D是否在該拋物線上,并說明理由;
(3)在(2)的條件下,連接BD,已知對(duì)稱軸上存在一點(diǎn)P使得△PBD的周長最小,求出P點(diǎn)的坐標(biāo);
(4)在(2)、(3)的條件下,若點(diǎn)M是線段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)M與點(diǎn)O、B不重合),過點(diǎn)M作MN∥BD交x軸于點(diǎn)N,連接PM、PN,設(shè)OM的長為t,△PMN的面積為S,求S和t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時(shí)M點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,矩形的邊在軸上,且,,直線經(jīng)過點(diǎn),交軸于點(diǎn).
(1)點(diǎn)、的坐標(biāo)分別是( ),( );
(2)求頂點(diǎn)在直線上且經(jīng)過點(diǎn)的拋物線的解析式;
(3)將(2)中的拋物線沿直線向上平移,平移后的拋物線交軸于點(diǎn),頂點(diǎn)為點(diǎn).求出當(dāng)時(shí)拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,拋物線與軸交于兩點(diǎn),與軸交于點(diǎn),連結(jié)AC,若
(1)求拋物線的解析式;
(2)拋物線對(duì)稱軸上有一動(dòng)點(diǎn)P,當(dāng)時(shí),求出點(diǎn)的坐標(biāo);
(3)如圖2所示,連結(jié),是線段上(不與、重合)的一個(gè)動(dòng)點(diǎn).過點(diǎn)作直線,交拋物線于點(diǎn),連結(jié)、,設(shè)點(diǎn)的橫坐標(biāo)為.當(dāng)t為何值時(shí),的面積最大?最大面積為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖①,在□ABCD中,對(duì)角線AC⊥AB,BC=10,tan∠B=2.點(diǎn)E是BC邊上的動(dòng)點(diǎn),過點(diǎn)E作EF⊥BC于點(diǎn)E,交折線AB-AD于點(diǎn)F,以EF為邊在其右側(cè)作正方形EFGH,使EH邊落在射線BC上.點(diǎn)E從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度在BC邊上運(yùn)動(dòng),當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),點(diǎn)E停止運(yùn)動(dòng),設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t()秒.
(1)□ABCD的面積為 ;當(dāng)t= 秒時(shí),點(diǎn)F與點(diǎn)A重合;
(2)點(diǎn)E在運(yùn)動(dòng)過程中,連接正方形EFGH的對(duì)角線EG,得△EHG,設(shè)△EHG與△ABC的重疊部分面積為S,請(qǐng)直接寫出S與t的函數(shù)關(guān)系式以及對(duì)應(yīng)的自變量t的取值范圍;
(3)作點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱點(diǎn)Bˊ,連接CBˊ交AD邊于點(diǎn)M(如圖②),當(dāng)點(diǎn)F在AD邊上時(shí),EF與對(duì)角線AC交于點(diǎn)N,連接MN得△MNC.是否存在時(shí)間t,使△MNC為等腰三角形?若存在,請(qǐng)求出使△MNC為等腰三角形的時(shí)間t;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com