二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是 _  __   __
(1,2)
二次函數(shù)y=a(x-h)2+k(a≠0)的頂點(diǎn)坐標(biāo)是(h,k).根據(jù)二次函數(shù)的頂點(diǎn)式方程y=3(x-1)2+2知,該函數(shù)的頂點(diǎn)坐標(biāo)是:(1,2).故答案是:(1,2).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:拋物線的對(duì)稱軸為軸交于兩點(diǎn),與軸交于點(diǎn)其中、

(1)求這條拋物線的函數(shù)表達(dá)式.
(2)已知在對(duì)稱軸上存在一點(diǎn)P,使得的周長(zhǎng)最。(qǐng)求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)當(dāng)時(shí)有最大值為4,且它的圖象形狀與相同,則該二次函數(shù)的解析式為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=x2+bx-2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(一1,0).

⑴求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
⑵判斷△ABC的形狀,證明你的結(jié)論;
⑶點(diǎn)M(m,0)是x軸上的一個(gè)動(dòng)點(diǎn),當(dāng)CM+DM的值最小時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線與交于A(-1,0)、B(3,0)兩點(diǎn),與軸交于點(diǎn)C(0,3),求拋物線的解析式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,一次函數(shù)分別交y軸、x軸于A、B兩點(diǎn),拋物線y=﹣x2+bx+c過(guò)A、B兩點(diǎn).

(1)求這個(gè)拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個(gè)拋物線于N.求當(dāng)t取何值時(shí),MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,求第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在同一坐標(biāo)系中一次函數(shù)和二次函數(shù)的圖象可能為 (       )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知矩形ABCD的邊長(zhǎng)AB=2,BC=3,點(diǎn)P是AD邊上的一動(dòng)點(diǎn)(P異于A、D),Q是BC邊上的任意一點(diǎn). 連AQ、DQ,過(guò)P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.

(1)求證:△APE∽△ADQ;
(2)設(shè)AP的長(zhǎng)為x,試求△PEF的面積S△PEF關(guān)于x的函數(shù)關(guān)系式,并求當(dāng)P在何處時(shí),S△PEF取得最大值?最大值為多少?
(3)當(dāng)Q在何處時(shí),△ADQ的周長(zhǎng)最?(須給出確定Q在何處的過(guò)程或方法,不必給出證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)均在拋物線上,下列說(shuō)法中正確的是(   )

查看答案和解析>>

同步練習(xí)冊(cè)答案