【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點,過點D作⊙O的切線交BC于點M,切點為N,則DM的長為( 。
A. B. C. D.
【答案】D
【解析】
連接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=,CD=AB=4,由于
AD,AB,BC分別與⊙O相切于E,F,G三點,得到∠AEO=∠AFO=∠OFB=∠BGO=,推出四邊形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出結(jié)果.
解:
如圖,連接OE,OF,ON,OG,
在矩形ABCD中,∠A=∠B=,CD=AB=4,
AD,AB,BC分別與O0相切于E,F,G三點,
∠AEO=∠AFO=∠OFB=∠BGO=,四邊形AFOE,FBGO是正方形,
AF=BF=AE=BG=2,
DE=3,
DM是OO的切線,
DN=DE=3,MN=MG,CM=5-2-MN=3-MN,
在RT△DMC中, ,
,
NM=
DM=3+=
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形EFGH的頂點在邊長為3的正方形ABCD邊上,若AE=x,正方形EFGH的面積為y,則y與x的函數(shù)關(guān)系式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6,點E、F分別在AB,AD上,若CE=3,且∠ECF=45°,則CF長為( )
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關(guān)注,某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為 度;
(2)請補全條形統(tǒng)計圖;
(3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對校園安全知識達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖①,四邊形ABCD、CEFG均為正方形.易知BE=DG.
探究:如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.
應(yīng)用:如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD的延長線上.若AE=3ED, ∠A=∠F,△EBC的面積為8,則菱形CEFG的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點,連接AE、BE,延長AE交BC的延長線于點F.
(1)求證:△DAE≌△CFE;
(2)若AB=BC+AD,求證:BE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)因式分解:.
(2)解方程:.
(3)先化簡:,然后在,,,四個數(shù)中選一個你認(rèn)為合適的數(shù)代入求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某通訊公司推出①,②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分)與費用y(元)之間的函數(shù)關(guān)系如圖所示.
(1)有月租的收費方式是________(填“①”或“②”),月租費是________元;
(2)分別求出①,②兩種收費方式中y與自變量x之間的函數(shù)表達(dá)式;
(3)請你根據(jù)用戶通訊時間的多少,給出經(jīng)濟實惠的選擇建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的中線,、分別是和延長線上的點,且,連接、,下列說法:①和的面積相等,②,③,④,⑤,其中一定正確的答案有______________.(只填寫正確的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com