關(guān)于x的一元二次方程(k+1)x2+2x+1=0的實(shí)數(shù)解是x1和x2
(1)求k的取值范圍;
(2)如果x1+x2-x1x2=1-k,求k的值.
【答案】分析:(1)根據(jù)題意可知,一元二次方程有兩個(gè)實(shí)數(shù)根,故△≥0,且方程為一元二次方程,可知二次項(xiàng)系數(shù)不為0,據(jù)此解答即可;
(2)根據(jù)一元二次方程根與系數(shù)的關(guān)系,得x1+x2=-,x1x2=,根據(jù)x1+x2-x1x2=1-k列出等式,解答即可.
解答:解:(1)△=22-4×(k-1)×1=-4k,
∵方程有實(shí)數(shù)根,
∴△≥0,且k+1≠0,
解得,k≤0,
k的取值范圍是k≤0,且k≠-1;
(2)根據(jù)一元二次方程根與系數(shù)的關(guān)系,得x1+x2=-,x1x2=,
x1+x2-x1x2=1-k,
得 -=1-k,
解得k1=2,k2=-2,
經(jīng)檢驗(yàn),k1、k2是原方程的解,
又由(1)k≤0,且k≠-1,
故k的值為-2.
點(diǎn)評(píng):本題考查了一元二次方程根的情況與判別式△的關(guān)系:
(1)△>0?方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)△=0?方程有兩個(gè)相等的實(shí)數(shù)根;
(3)△<0?方程沒有實(shí)數(shù)根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•北侖區(qū)二模)若關(guān)于x的一元二次方程a(x+m)2=3兩個(gè)實(shí)根為x1=-1,x2=3,則拋物線y=a(x+m-2)2-3與x軸的交點(diǎn)橫坐標(biāo)分別是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知方程(m-2)xm2-5m-8+(m-3)x+5=0是關(guān)于x的一元二次方程,則m=
65
2
65
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•沈陽)若關(guān)于x的一元二次方程x2+4x+a=0有兩個(gè)不相等的實(shí)數(shù)根,則a的取值范圍是
a<4
a<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘭州一模)若x1,x2是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)根,則方程的兩個(gè)根x1,x2和系數(shù)a,b,c有如下關(guān)系:x1+x2=-
b
a
,x1•x2=
c
a
,把它們稱為一元二次方程根與系數(shù)關(guān)系定理,請(qǐng)利用此定理解答一下問題:
已知x1,x2是一員二次方程(m-3)x2+2mx+m=0的兩個(gè)實(shí)數(shù)根.
(1)是否存在實(shí)數(shù)m,使-x1+x1x2=4+x2成立?若存在,求出m的值,若不存在,請(qǐng)你說明理由;
(2)若|x1-x2|=
3
,求m的值和此時(shí)方程的兩根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•瀘州)若關(guān)于x的一元二次方程kx2-2x-1=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)k的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案