【題目】如圖,在四邊形ABCD中,,連接AC,點P、E分別在AB、CD上,連接PE,PEAC交于點F,連接PC,,

1)判斷四邊形PBCE的形狀,并說明理由;

2)求證:;

3)當PAB的中點時,四邊形APCE是什么特殊四邊形?請說明理由.

【答案】1)四邊形PBCE為平行四邊形,證明過程見解析;(2)見解析;(3)四邊形APCE為矩形,證明過程見解析.

【解析】

1)證明四邊形ABCD為平行四邊形,從而得BP//CE,根據(jù)內(nèi)錯角相等證明AD//PE,從而可證PE//BC,得四邊形PBCE為平行四邊形;(2)證明△CBP≌△ACE即可證明CP=AE;(3)證明四邊形APCE為平行四邊形,然后根據(jù)三線合一證明∠APC=90°,可證四邊形APCE為矩形.

解:(1)四邊形PBCE為平行四邊形.

證明:∵,,

∴四邊形ABCD為平行四邊形,

∴PB//EC,

,

∴AD//PE,

∴PE//BC,

∴四邊形PBCE為平行四邊形.

2)∵四邊形ABCD為平行四邊形,

∴∠B=∠D,AB//CD,

又∵

∴∠B=,

BC=AC

∵四邊形PBCE為平行四邊形,

∴PB=CE,

在△CBP和△ACE中

∴△CBP≌△ACE.

.

3)四邊形APCE為矩形,

證明:∵PAB的中點

BP=AP,

∵四邊形PBCE為平行四邊形,

∴BP=CE,

AP=CE,

又∵AB//CD

∴四邊形APCE為平行四邊形,

CB=CA,AP=BP

CPAB,

∴∠APC=90°,

為矩形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在我市中小學標準化建設工程中,某學校計劃購進一批電腦和一體機,經(jīng)過市場考察得知,購進 1 臺筆記本電腦和 2 臺一體機需要 1.45 萬元,購進 2 臺筆記本電腦和 1 臺一體機需要 1.55 萬元.

1)求每臺筆記本電腦、一體機各多少萬元?

2)根據(jù)學校實際,需購進筆記本電腦和一體機共35臺,總費用不超過17.5萬元,但不低于 17.2萬元,請你通過計算求出共幾種購買方案,并寫出費用最低具體方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線c1的頂點為A(﹣1,4),與y軸的交點為D(0,3).

(1)求c1的解析式;

(2)若直線l1:y=x+m與c1僅有唯一的交點,求m的值;

(3)若拋物線c1關(guān)于y軸對稱的拋物線記作c2,平行于x軸的直線記作l2:y=n.試結(jié)合圖形回答:當n為何值時,l2與c1和c2共有:兩個交點;三個交點;四個交點;

(4)若c2與x軸正半軸交點記作B,試在x軸上求點P,使PAB為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著科技的進步和網(wǎng)絡資源的豐富,在線學習已經(jīng)成為更多人的自主學習選擇.某校計劃為學生提供以下四類在線學習方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學生需求,該校隨機對本校部分學生進行了你對哪類在線學習方式最感興趣的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

1)求本次調(diào)查的學生總?cè)藬?shù),并補全條形統(tǒng)計圖;

2)求扇形統(tǒng)計圖中在線討論對應的扇形圓心角的度數(shù);

3)該校共有學生3000人,請你估計該校對在線閱讀最感興趣的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,點DAC的中點,過點C于點E,過點ABD的平行線,交CE的延長線于點F,在AF的延長線上截取,連接BG、DF

1)證明:四邊形BDFG是菱形;

2)若,,求線段AG的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,,那么成立嗎?為什么?下面是小麗同學進行的推理,請你將小麗同學的推理過程補充完整.

解:成立,理由如下:

(已知)

(同旁內(nèi)角互補,兩條直線平行)

(②

(已知),(等量代換)

(③

(④ ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC,AC的垂直平分線交AB于點D,交AC于點O,過點CCEAB交直線OD于點E,連接AE、CD.

⑴如圖1,求證:四邊形ADCE是菱形;

⑵如圖2,當∠ACB=90°,BC=6,ADC的周長為18時,求AC的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】O為直線AB上的一點,OCOD,射線OE平分∠AOD.

(1)如圖①,判斷∠COE和∠BOD之間的數(shù)量關(guān)系,并說明理由;

(2)若將∠COD繞點O旋轉(zhuǎn)至圖②的位置,試問(1)中∠COE和∠BOD之間的數(shù)量關(guān)系是否發(fā)生變化?并說明理由;

(3)若將∠COD繞點O旋轉(zhuǎn)至圖③的位置,探究∠COE和∠BOD之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店在今年2月底以每袋23元的成本價收購一批農(nóng)產(chǎn)品準備向外銷售,當此農(nóng)產(chǎn)品售價為每袋36元時,3月份銷售125袋,4、5月份該農(nóng)產(chǎn)品十分暢銷,銷售量持續(xù)走高.在售價不變的基礎(chǔ)上,5月份的銷售量達到180.45這兩個月銷售量的月平均增長率不變.

1)求4、5這兩個月銷售量的月平均增長率;

26月份起,該商店采用降價促銷的方式回饋顧客,經(jīng)調(diào)查發(fā)現(xiàn),該農(nóng)產(chǎn)品每降價1/袋,銷量就增加4袋,當農(nóng)產(chǎn)品每袋降價多少元時,該商店6月份獲利1920元?

查看答案和解析>>

同步練習冊答案