已知:如圖,在?ABCD中,BE、CE分別平分∠ABC、∠BCD,E在AD上,BE=12 cm,CE=5 cm.求?ABCD的周長和面積.

【答案】分析:根據(jù)角平分線的定義和平行線的性質(zhì)得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根據(jù)直角三角形的勾股定理得到BC=13.根據(jù)等腰三角形的性質(zhì)得到AB=CD=AD=BC=6.5,從而求得該平行四邊形的周長;根據(jù)直角三角形的面積可以求得平行四邊形BC邊上的高.
解答:解:∵BE、CE分別平分∠ABC、∠BCD,
∴∠1=∠3=∠ABC,∠DCE=∠BCE=∠BCD
∵AD∥BC,AB∥CD
∴∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°
∴∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°
∴AB=AE,CD=DE,∠BEC=90°
在直角三角形BCE中,根據(jù)勾股定理得:BC=13
根據(jù)平行四邊形的對(duì)邊相等,得到:AB=CD,AD=BC
∴平行四邊形的周長等于:13+13+13=39.
作EF⊥BC于F.根據(jù)直角三角形的面積公式得:EF==
所以平行四邊形的面積==60.
即平行四邊形的周長為39cm,面積為60cm2
點(diǎn)評(píng):本題主要考查了平行四邊形的性質(zhì),在平行四邊形中,當(dāng)出現(xiàn)角平分線時(shí),一般可構(gòu)造等腰三角形,進(jìn)而利用等腰三角形的性質(zhì)解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過A,D兩點(diǎn)作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個(gè)交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號(hào)和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時(shí),求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:專項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊(cè)答案