【題目】綜合題
(1)如圖(1),正方形AEGH的頂點(diǎn)E、H在正方形ABCD的邊上,直接寫出HD:GC:EB的結(jié)果(不必寫計(jì)算過程);
(2)將圖(1)中的正方形AEGH繞點(diǎn)A旋轉(zhuǎn)一定角度,如圖(2),求HD:GC:EB;
(3)把圖(2)中的正方形都換成矩形,如圖(3),且已知DA:AB=HA:AE=m:n,此時(shí)HD:GC:EB的值與(2)小題的結(jié)果相比有變化嗎?如果有變化,直接寫出變化后的結(jié)果(不必寫計(jì)算過程).
【答案】
(1)解:連接AG,
∵正方形AEGH的頂點(diǎn)E、H在正方形ABCD的邊上,
∴∠GAE=∠CAB=45°,AE=AH,AB=AD,
∴A,G,C共線,AB﹣AE=AD﹣AH,
∴HD=BE,
∵AG= = AE,AC= = AB,
∴GC=AC﹣AG= AB﹣ AE= (AB﹣AE)= BE,
∴HD:GC:EB=1: :1;
(2)解:連接AG、AC,
∵△ADC和△AHG都是等腰直角三角形,
∴AD:AC=AH:AG=1: ,∠DAC=∠HAG=45°,
∴∠DAH=∠CAG,
∴△DAH∽△CAG,
∴HD:GC=AD:AC=1: ,
∵∠DAB=∠HAE=90°,
∴∠DAH=∠BAE,
在△DAH和△BAE中,
,
∴△DAH≌△BAE(SAS),
∴HD=EB,
∴HD:GC:EB=1: :1;
(3)解:有變化,
連接AG、AC,
DA:AB=HA:AE=m:n,
∵∠ADC=∠AHG=90°,
∴△ADC∽△AHG,
∴AD:AC=AH:AG=m: ,∠DAC=∠HAG,
∴∠DAH=∠CAG,
∴△DAH∽△CAG,
∴HD:GC=AD:AC=m: ,
∵∠DAB=∠HAE=90°,
∴∠DAH=∠BAE,
∵DA:AB=HA:AE=m:n,
∴△ADH∽△ABE,
∴DH:BE=AD:AB=m:n,
∴HD:GC:EB=m: :n.
【解析】(1)首先連接AG,由正方形AEGH的頂點(diǎn)E、H在正方形ABCD的邊上,易證得∠GAE=∠CAB=45°,AE=AH,AB=AD,即A,G,C共線,繼而可得HD=BE,GC=BE,即可求得HD:GC:EB的值;
(2)連接AG、AC,由△ADC和△AHG都是等腰直角三角形,易證得△DAH∽△CAG與△DAH≌△BAE,利用相似三角形的對應(yīng)邊成比例與全等三角形的性質(zhì),即可求得HD:GC:EB的值;
(3)連接AG、AC, 由DA:AB=HA:AE=m:n,易證得△ADC∽△AHG,△DAH∽△CAG,△ADH∽△ABE,利用相似三角形的對應(yīng)邊成比例與勾股定理即可求得HD:GC:EB的值
【考點(diǎn)精析】關(guān)于本題考查的等腰直角三角形和勾股定理的概念,需要了解等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,Rt△AOB的兩條直角邊OA、OB分別在x軸和y軸上,OA=3,OB=4.把△AOB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)120°,得到△ADC.邊OB上的一點(diǎn)M旋轉(zhuǎn)后的對應(yīng)點(diǎn)為M′,當(dāng)AM′+DM取得最小值時(shí),點(diǎn)M的坐標(biāo)為( )
A.(0, )
B.(0, )
C.(0, )
D.(0,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①是一個(gè)長為2m.寬為2n的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖②形狀拼成一個(gè)正方形.
(1)你認(rèn)為圖②中的陰影部分的正方形的邊長等于________?
(2)請用兩種不同的方法求圖②中陰影部分的面積.(不用化簡)
方法1:___________;方法2:___________.
(3)由問題(2)你能寫出三個(gè)代數(shù)式:,,mn之間的一個(gè)等量關(guān)系.
答:______________.
(4)根據(jù)(3)題中的等量關(guān)系和完全平方公式,解決如下問題:
①已知:m+n=5,mn=-3,求:(m﹣n)2的值;
②已知m-n=5,,求mn的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們都知道,表示5與 -2之差的絕對值,實(shí)際上也可以理解為 5 與 -2兩數(shù)在數(shù)軸上所對的兩點(diǎn)之間的距離,則使得這樣的整數(shù)有____個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:y=y1+y2 , y1與x成正比例,y2與x成反比例,當(dāng)x=2時(shí),y=﹣4;當(dāng)x=﹣1時(shí),y=5,求y與x的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中, , , ,D是AB邊的中點(diǎn),E是AC邊上一點(diǎn),聯(lián)結(jié)DE,過點(diǎn)D作交BC邊于點(diǎn)F,聯(lián)結(jié)EF.
(1)如圖1,當(dāng)時(shí),求EF的長;
(2)如圖2,當(dāng)點(diǎn)E在AC邊上移動(dòng)時(shí), 的正切值是否會(huì)發(fā)生變化,如果變化請說出變化情況;如果保持不變,請求出的正切值;
(3)如圖3,聯(lián)結(jié)CD交EF于點(diǎn)Q,當(dāng)是等腰三角形時(shí),請直接寫出BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某開發(fā)公司生產(chǎn)的 960 件新產(chǎn)品需要精加工后,才能投放市場,現(xiàn)甲、乙兩個(gè)工廠都想加工這批產(chǎn)品,已知甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用 20 天,而甲工廠每天加工的數(shù)量是乙工廠每天加工的數(shù)量的,公司需付甲工廠加工費(fèi)用為每天 80 元,乙工廠加工費(fèi)用為每天 120 元.
(1)甲、乙兩個(gè)工廠每天各能加工多少件新產(chǎn)品?
(2)公司制定產(chǎn)品加工方案如下:可以由每個(gè)廠家單獨(dú)完成,也可以由兩個(gè)廠家合作完成.在加工過程中,公司派一名工程師每天到廠進(jìn)行技術(shù)指導(dǎo),并負(fù)擔(dān)每天 15 元的午餐補(bǔ)助費(fèi), 請你幫公司選擇一種既省時(shí)又省錢的加工方案,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com