精英家教網 > 初中數學 > 題目詳情

某班同學到野外活動,為測量一池塘兩端A、B的距離,設計了幾種方案,下面介紹兩種:
(I)如圖(1),先在平地取一個可以直接到達A、B的點C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測出DE的距離即為AB的長.
(II)如圖(2),先過B點作AB的垂線BF,再在BF上取C、D兩點,使BC=CD,接著過點D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離.

閱讀后回答下列問題:
(1)方案(I)是否可行?______,理由是______;
(2)方案(II)是否切實可行?______,理由是______.
(3)方案(II)中作BF⊥AB,ED⊥BF的目的是______;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?
(4)方案(II)中,若使BC=n•CD,能否測得(或求出)AB的長?理由是______,若ED=m,則AB=______.

解:(1)方案(Ⅰ)可行;
∵DC=AC,EC=BC且有對頂角∠ACB=∠DCE,
∴△ACB≌△DCE(SAS),
∴AB=DE,
∴測出DE的距離即為AB的長.
故方案(Ⅰ)可行.

(2)方案(Ⅱ)可行;
∵AB⊥BC,DE⊥CD,
∴∠ABC=∠EDC=90°,
又∵BC=CD,∠ACB=∠ECD,
∴△ABC≌△EDC,
∴AB=ED,
∴測出DE的長即為AB的距離.
故方案(Ⅱ)可行.

(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是作直角三角形;
若∠ABD=∠BDE≠90°,∠ACB=∠ECD,
∴△ABC∽△EDC,
=,
∴只要測出ED、BC、CD的長,即可求得AB的長.
∵BC=CD,∴ED=AB,
∴方案(Ⅱ)成立.

(4)根據(3)中所求可以得出,
=,
∵BC=n•CD,
=n,求出DE即可得出答案,
當ED=m,則AB=mn.
分析:(1)由題意可證明△ACB≌△DCE,AB=DE,故方案(Ⅰ)可行;
(2)由題意可證明△ABC≌△EDC,AB=ED,故方案(Ⅱ)可行;
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是作直角三角形;由題意可證明△ABC∽△EDC,=,故此時方案(Ⅱ)成立.
(4)根據相似三角形的判定與性質得出△ABC∽△EDC,得出 =進而求出即可.
點評:此題主要考查了全等三角形的證明及性質和相似三角形的判定和性質.熟練地應用此性質是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

某班同學到野外活動,為測量一池塘兩端A、B的距離,設計了幾種方案,下面介紹兩種:
(I)如圖(1),先在平地取一個可以直接到達A、B的點C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測出DE的距離即為AB的長.
(II)如圖(2),先過B點作AB的垂線BF,再在BF上取C、D兩點,使BC=CD,接著過點D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離.
精英家教網
閱讀后回答下列問題:
(1)方案(I)是否可行?
 
,理由是
 

(2)方案(II)是否切實可行?
 
,理由是
 

(3)方案(II)中作BF⊥AB,ED⊥BF的目的是
 
;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?
(4)方案(II)中,若使BC=n•CD,能否測得(或求出)AB的長?理由是
 
,若ED=m,則AB=
 

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

某班同學到野外活動,為測量一池塘兩端A、B的距離,設計了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個可以直接到達A、B的點C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測出DE的距離即為AB的長。(II)如圖(2),先過B點作AB的垂線BF,再在BF上取C、D兩點,使BC=CD,接著過點D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離。閱讀后回答下列問題:

1.方案(I)是否可行?為什么?

2.方案(II)是否切實可行?為什么?

3.方案(II)中作BF⊥AB,ED⊥BF的目的是           ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?

4.方案(II)中,若使BC=n·CD,能否測得(或求出)AB的長?理由是         ,若ED=m,則AB=      。

 

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

(本小題滿分12分)某班同學到野外活動,為測量一池塘兩端A、B的距離,設計了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個可以直接到達A、B的點C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測出DE的距離即為AB的長。(II)如圖(2),先過B點作AB的垂線BF,再在BF上取C、D兩點,使BC=CD,接著過點D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離。閱讀后回答下列問題:

【小題1】(1)方案(I)是否可行?為什么?
【小題2】(2)方案(II)是否切實可行?為什么?
【小題3】(3)方案(II)中作BF⊥AB,ED⊥BF的目的是           ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?
【小題4】(4)方案(II)中,若使BC=n·CD,能否測得(或求出)AB的長?理由是        ,若ED=m,則AB=     。

查看答案和解析>>

科目:初中數學 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數學卷 題型:解答題

(本小題滿分12分)某班同學到野外活動,為測量一池塘兩端A、B的距離,設計了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個可以直接到達A、B的點C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測出DE的距離即為AB的長。(II)如圖(2),先過B點作AB的垂線BF,再在BF上取C、D兩點,使BC=CD,接著過點D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離。閱讀后回答下列問題:

【小題1】(1)方案(I)是否可行?為什么?
【小題2】(2)方案(II)是否切實可行?為什么?
【小題3】(3)方案(II)中作BF⊥AB,ED⊥BF的目的是           ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?
【小題4】(4)方案(II)中,若使BC=n·CD,能否測得(或求出)AB的長?理由是        ,若ED=m,則AB=     

查看答案和解析>>

科目:初中數學 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數學卷 題型:解答題

(本小題滿分12分)某班同學到野外活動,為測量一池塘兩端A、B的距離,設計了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個可以直接到達A、B的點C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測出DE的距離即為AB的長。(II)如圖(2),先過B點作AB的垂線BF,再在BF上取C、D兩點,使BC=CD,接著過點D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離。閱讀后回答下列問題:

1.(1)方案(I)是否可行?為什么?

2.(2)方案(II)是否切實可行?為什么?

3.(3)方案(II)中作BF⊥AB,ED⊥BF的目的是            ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?

4.(4)方案(II)中,若使BC=n·CD,能否測得(或求出)AB的長?理由是         ,若ED=m,則AB=      。

 

查看答案和解析>>

同步練習冊答案