【題目】如圖,已知線段AB=2,點P是線段AB上一點,分別以AP、BP為邊作兩個正方形.
(1)如果APx,求兩個正方形的面積之和S;
(2)當點P是AB的中點時,求兩個正方形的面積之和S1;
(3)當點P不是AB的中點時,比較(1)中的S與(2)中S1的大小.
【答案】(1);(2);(3).
【解析】
(1)根據(jù)正方形的面積公式,可得每個正方形的面積,根據(jù)整式的加減即可求解;
(2)根據(jù)正方形的面積公式,可得正方形的面積,根據(jù)有理數(shù)的加法即可求解;
(3)根據(jù)整式的加減進行化解,再根據(jù)完全平方公式的特點即可求解.
(1)APx,BP=2-x,
S=S正方形APCD+ S正方形PBFE
=x2+(2-x)2
=
(2)當點P是AB的中點時,AP1,BP=1,
∴S1= S正方形APCD+ S正方形PBFE
= AP2+BP2
=2
(3)當點P不是AB的中點時,得x≠1,
∴S- S1=-2==2()=2
∵x≠1,∴2>0,
故.
科目:初中數(shù)學 來源: 題型:
【題目】某商場購進一批單價為4元/件的日用品。若按每件5元的價格出售,每月能賣出3萬件;若按每件6元的價格銷售,每月能賣出2萬件;假定每月的銷售件數(shù)y(萬件)與價格x(元/件)之間滿足一次函數(shù)關(guān)系.
(1)試求y與x的函數(shù)關(guān)系式;
(2)當銷售價格定為多少時,才能使每月的利潤最大?每月的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,∠BAD=60°
(1) 如圖1,點E為線段AB的中點,連接DE、CE.若AB=4,求線段EC的長
(2) 如圖2,M為線段AC上一點(不與A、C重合),以AM為邊向上構(gòu)造等邊三角形AMN,線段MN與AD交于點G,連接NC、DM,Q為線段NC的中點,連接DQ、MQ,判斷DM與DQ的數(shù)量關(guān)系,并證明你的結(jié)論
(3) 在(2)的條件下,若AC=,請你直接寫出DM+CN的最小值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=α,點P是△ABC內(nèi)一點,且.連接PB,試探究PA,PB,PC滿足的等量關(guān)系.
圖1 圖2
(1)當α=60°時,將△ABP繞點A逆時針旋轉(zhuǎn)60°得到,連接,如圖1所示.
由≌可以證得是等邊三角形,再由可得∠APC的大小為 度,進而得到是直角三角形,這樣可以得到PA,PB,PC滿足的等量關(guān)系為 ;
(2)如圖2,當α=120°時,請參考(1)中的方法,探究PA,PB,PC滿足的等量關(guān)系,并給出證明;
(3)PA,PB,PC滿足的等量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某小區(qū)的一個健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端點A到地面CD的距離(精確到0.1m).(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,∠ABC,∠BCD的平分線分別交AD于點E,F,BE,CF相交于點G.
(1)求證:BE⊥CF;
(2)若AB=a,CF=b,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOC=15°,OC平分∠AOB,P為OC上一點,PD∥OA交OB于點D,PE ⊥OA于E,OD=4cm,則PE=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點A(0,2),B(4,0),C(4,3)三點.
(1)建立平面直角坐標系并描出A、B、C三點
(2)求△ABC的面積;
(3)如果在第二象限內(nèi)有一點P(m,1),且四邊形ABOP的面積是△ABC的面積的兩倍;求滿足條件的P點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個反比例函數(shù),在第一象限內(nèi)的圖象如圖所示,點P1,P2,P3,……P2005在反比例函數(shù)圖象上,它們的橫坐標分別是x1,x2,x3,x2005縱坐標分別為1,3,5,……;
共2005個連續(xù)奇數(shù),過點P1,P2,P3,……,P2005分別作軸的平行線,與的圖象交點依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),……,Q2005(x2005,y2005),則_____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com