【題目】已知關(guān)于x的方程x2﹣2(k﹣1)x+k2=0,

(1)當(dāng)k為何值時(shí),方程有實(shí)數(shù)根;

(2)設(shè)x1,x2是方程的兩個(gè)實(shí)數(shù)根,且x12+x22=4,求k的值.

【答案】(1)當(dāng)k時(shí),方程有實(shí)數(shù)根;(2)k=0.

【解析】

(1)要使方程有實(shí)數(shù)根,必須△≥0,即4(k﹣1)2﹣4k2≥0;(2)由韋達(dá)定理得,x1+x2=2(k﹣1),x1x2k2,故x12+x22=(x1+x22﹣2x1x2.

解:(1)要使方程有實(shí)數(shù)根,必須△≥0

即4(k﹣1)2﹣4k2≥0

解得k,∴當(dāng)k時(shí),方程有實(shí)數(shù)根.

(2)由韋達(dá)定理得,x1+x2=2(k﹣1),x1x2k2

x12+x22=(x1+x22﹣2x1x2

=4(k﹣1)2﹣2k2

=2k2﹣8k+4,

x12+x22=4,

∴2k2﹣8k+4=4

解得k1=0,k2=4,

由(1)知k,∴k=4不合題意,

k=0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與直線BC相交于點(diǎn),直線AB軸相交于點(diǎn),直線BC軸、軸分別相交于點(diǎn)、點(diǎn)C

1)求直線AB的解析式;

2)過點(diǎn)ABC的平行線交軸于點(diǎn)E,求點(diǎn)E的坐標(biāo);

3)在(2)的條件下,點(diǎn)P是直線AB上一動點(diǎn)且在軸的上方,如果以點(diǎn)DE、PQ為頂點(diǎn)的平行四邊形的面積等于△ABC,請求出點(diǎn)P的坐標(biāo),并直接寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(3分)如圖,在菱形ABCD中,B=60°,AB=1,延長AD到點(diǎn)E,使DE=AD,延長CD到點(diǎn)F,使DF=CD,連接AC、CE、EF、AF,則下列描述正確的是(

A四邊形ACEF是平行四邊形,它的周長是4

B四邊形ACEF是矩形,它的周長是

C四邊形ACEF是平行四邊形,它的周長是

D四邊形ACEF是矩形,它的周長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,可以自由轉(zhuǎn)動的轉(zhuǎn)盤被它的兩條直徑分成了四個(gè)分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動轉(zhuǎn)盤,待轉(zhuǎn)盤自動停止后,指針指向一個(gè)扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí),稱為轉(zhuǎn)動轉(zhuǎn)盤一次(若指針指向兩個(gè)扇形的交線,則不計(jì)轉(zhuǎn)動的次數(shù),重新轉(zhuǎn)動轉(zhuǎn)盤,直到指針指向一個(gè)扇形的內(nèi)部為止)

(1)轉(zhuǎn)動轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;

(2)轉(zhuǎn)動轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2x﹣(m﹣2)=0有實(shí)數(shù)根.

(1)求m的取值范圍;

(2)若方程有一個(gè)根為x=1,求m的值及另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的等邊△ABO在平面直角坐標(biāo)系的位置如圖所示,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)Ax軸上,以點(diǎn)O為旋轉(zhuǎn)中心,將△ABO按逆時(shí)針方向旋轉(zhuǎn)60°,得到△OAB′,則點(diǎn)A′的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn) O 是等邊ABC 內(nèi)一點(diǎn),AOB=110°,BOCa.將BOC 繞點(diǎn) C 按順時(shí)針方向旋轉(zhuǎn) 60°ADC,則ADC≌△BOC,連接 OD

(1)求證:COD 是等邊三角形;

(2)當(dāng)α=120°時(shí),試判斷 AD OC 的位置關(guān)系,并說明理由;

(3)探究:當(dāng) a 為多少度時(shí),AOD 是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC與△A'B'C'中,∠A=∠A',BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,點(diǎn)D、E、D'、E'分別在AC、AB、A'C'、A'B'上,且

求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育用品商場預(yù)測某品牌運(yùn)動服能夠暢銷,就用32000元購進(jìn)了一批這種運(yùn)動服,上市后很快脫銷,商場又用68000元購進(jìn)第二批這種運(yùn)動服,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但每套進(jìn)價(jià)多了10元.

1)該商場兩次共購進(jìn)這種運(yùn)動服多少套?

2)如果這兩批運(yùn)動服每套的售價(jià)相同,且全部售完后總利潤不低于,那么每套售價(jià)至少是多少元?

查看答案和解析>>

同步練習(xí)冊答案