【題目】完成下面的解題過程:
用公式法解下列方程:
(1)2x2﹣3x﹣2=0.
解:a=___,b=___,c=___.
b2﹣4ac=___=___>0.
=____=___,
x1=__,x2=___.
(2)x(2x﹣)=x﹣3.
解:整理,得___.
a=__,b=___,c=___.
b2﹣4ac=___=___.
=_____=____,
x1=x2=__.
(3)(x﹣2)2=x﹣3.
解:整理,得______.
a=___,b=___,c=___.
b2﹣4ac=___=___<0.
方程___實數(shù)根.
【答案】 2, -3, -2, 9+16, 25, , , 2, -, 2x﹣2x+3=0, 2, -2, 3, 24-24, 0, , , , x﹣5x+7=0, 1, -5, 7, 25-28, -3, 沒有
【解析】(1)2x2﹣3x﹣2=0,因為a=2,b=-3,c=-2,
所以b2﹣4ac=9+16=25>0,
==,
x1=2,x2=.
(2)x(2x﹣)=x﹣3,
先將方程整理,得,因為a=2,b=,c=3,
所以b2﹣4ac=24-24=0,所以==,
所以x1=x2=.
(3)(x﹣2)2=x﹣3,
先將方程整理,得,
因為a=1,b=,c=7,
所以b2﹣4ac=25-28=-3<0,
所以方程沒有實數(shù)根.
故答案為: (1). 2, (2). -3, (3). -2, (4). 9+16, (5). 25, (6). ,
(7). , (8). 2, (9). -, (10). 2x﹣2x+3=0, (11). 2, (12). -2,
(13). 3, (14). 24-24, (15). 0, (16). , (17). , (18). ,
(19). x﹣5x+7=0, (20). 1, (21). -5, (22). 7, (23). 25-28, (24). -3, (25). 沒有.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD,CE、BE的交點為E,現(xiàn)作如下操作:
第一次操作,分別作∠ABE和∠DCE的平分線,交點為E1,
第二次操作,分別作∠ABE1和∠DCE1的平分線,交點為E2,
第三次操作,分別作∠ABE2和∠DCE2的平分線,交點為E3,…,
第n次操作,分別作∠ABEn﹣1和∠DCEn﹣1的平分線,交點為En.
若∠En=1度,那∠BEC等于 度
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了讓市民樹立起“珍惜水、節(jié)約水、保護水”的用水理念,某市從今年4月起,居民生活用水按階梯式計算水價,水價計算方式如下表所示,每噸水還需另加污水處理費0.80元.已知小張家今年4月份用水20噸,交水費49元;5月份用水25噸,交水費65.4元.(友情提示:水費=水價+污水處理費)
用水量 | 水價(元/噸) |
不超過20噸 | m |
超過20噸且不超過30噸的部分 | n |
超過30噸的部分 | 2m |
(1)求m、n的值;
(2)隨著夏天的到來,用水量將激增.為了節(jié)省開支,小張計劃把6月份的水費控制在不超過家庭月收入的2%.若小張家的月收入為8190元,則小張家6月份最多能用水多少噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB為⊙O直徑,D是的中點,DE⊥AC交AC的延長線于E,⊙O的切線交AD的延長線于F.
(1)求證:直線DE與⊙O相切;
(2)已知DG⊥AB且DE=4,⊙O的半徑為5,求tan∠F的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【問題情境】
在△ABC中,AB=AC,點P為BC所在直線上的任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點C作CF⊥AB,垂足為F.當P在BC邊上時(如圖1),求證:PD+PE=CF.
圖① 圖② 圖③
證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.(不要證明)
【變式探究】
當點P在CB延長線上時,其余條件不變(如圖3).試探索PD、PE、CF之間的數(shù)量關系并說明理由.
請運用上述解答中所積累的經(jīng)驗和方法完成下列兩題:
【結論運用】
如圖4,將長方形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;
【遷移拓展】
在直角坐標系中.直線l1:y=與直線l2:y=2x+4相交于點A,直線l1、l2與x軸分別交于點B、點C.點P是直線l2上一個動點,若點P到直線l1的距離為1.求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC,∠C=90°,∠ABC=40°,按以下步驟作圖:
①以點A為圓心,小于AC的長為半徑.畫弧,分別交AB、AC于點E、F;
②分別以點E、F為圓心,大于EF的長為半徑畫弧,兩弧相交于點G;
③作射線AG,交BC邊于點D,則∠ADC的度數(shù)為________.
【答案】65°
【解析】由題意可知,所作的射線AG是∠BAC的角平分線.
∵在△ABC中,∠C=90°,∠ABC=40°,
∴∠BAC=180°-90°-40°=50°,
∴∠CAD=∠BAC=25°,
∴∠ADC=180°-90°-25°=65°.
【題型】填空題
【結束】
13
【題目】如圖所示,已知線段AB,∠α,∠β,分別過A、B作∠CAB=∠α,∠CBA=∠β.(不寫作法,保留作圖痕跡)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明想要測量學校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走3米到達A處,測得樹頂端E的仰角為30°,他又繼續(xù)走下臺階到達C處,測得樹的頂端E的仰角是60°,再繼續(xù)向前走到大樹底D處,測得食堂樓頂N的仰角為45°.已知A點離地面的高度AB=2米,∠BCA=30°,且B、C、D三點在同一直線上.
(1)求樹DE的高度;
(2)求食堂MN的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某輪船由西向東航行,在A處測得小島P的方位是北偏東75°,又繼續(xù)航行7海里后,在B處測得小島P的方位是北偏東60°,求:
(1)此時輪船與小島P的距離BP是多少海里;
(2)小島點P方圓3海里內有暗礁,如果輪船繼續(xù)向東行使,請問輪船有沒有觸焦的危險?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com